946 resultados para System model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3rd Workshop on High-performance and Real-time Embedded Systems (HIRES 2015). 21, Jan, 2015. Amsterdam, Netherlands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award Nominee

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Chinese welding industry is growing every year due to rapid development of the Chinese economy. Increasingly, companies around the world are looking to use Chinese enterprises as their cooperation partners. However, the Chinese welding industry also has its weaknesses, such as relatively low quality and weak management. A modern, advanced welding management system appropriate for local socio-economic conditions is required to enable Chinese enterprises to enhance further their business development. The thesis researches the design and implementation of a new welding quality management system for China. This new system is called ‗welding production quality control management model in China‘ (WQMC). Constructed on the basis of analysis of a survey and in-company interviews, the welding management system comprises the following different elements and perspectives: a ‗Localized congenital existing problem resolution strategies‘ (LCEPRS) database, a ‗human factor designed training system‘ (HFDT) training strategy, the theory of modular design, ISO 3834 requirements, total welding management (TWM), and lean manufacturing (LEAN) theory. The methods used in the research are literature review, questionnaires, interviews, and the author‘s model design experiences and observations, i.e. the approach is primarily qualitative and phenomenological. The thesis describes the design and implementation of a HFDT strategy in Chinese welding companies. Such training is an effective way to increase employees‘ awareness of quality and issues associated with quality assurance. The study identified widely existing problems in the Chinese welding industry and constructed a LCEPRS database that can be used in efforts to mitigate and avoid common problems. The work uses the theory of modular design, TWM and LEAN as tools for the implementation of the WQMC system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.