950 resultados para System failures (Engineering) Graphic methods
Resumo:
This paper presents and compares two approaches to estimate the origin (upstream or downstream) of voltage sag registered in distribution substations. The first approach is based on the application of a single rule dealing with features extracted from the impedances during the fault whereas the second method exploit the variability of waveforms from an statistical point of view. Both approaches have been tested with voltage sags registered in distribution substations and advantages, drawbacks and comparative results are presented
Resumo:
This paper presents and compares two approaches to estimate the origin (upstream or downstream) of voltage sag registered in distribution substations. The first approach is based on the application of a single rule dealing with features extracted from the impedances during the fault whereas the second method exploit the variability of waveforms from an statistical point of view. Both approaches have been tested with voltage sags registered in distribution substations and advantages, drawbacks and comparative results are presented
Resumo:
Powder metallurgy is a branch of metallurgy which produces metallic compacts in their final forms by means of pressure and heat-treatment from the powders. The products of powder metallurgy are being used in our daily lives quite often. For example, the tungsten wires in the electric bulbs to the silver-tin fillings of our teeth.
Resumo:
This paper aims to survey the techniques and methods described in literature to analyse and characterise voltage sags and the corresponding objectives of these works. The study has been performed from a data mining point of view
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods
Resumo:
This paper aims to survey the techniques and methods described in literature to analyse and characterise voltage sags and the corresponding objectives of these works. The study has been performed from a data mining point of view
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
Most of the problems in modern structural design can be described with a set of equation; solutions of these mathematical models can lead the engineer and designer to get info during the design stage. The same holds true for physical-chemistry; this branch of chemistry uses mathematics and physics in order to explain real chemical phenomena. In this work two extremely different chemical processes will be studied; the dynamic of an artificial molecular motor and the generation and propagation of the nervous signals between excitable cells and tissues like neurons and axons. These two processes, in spite of their chemical and physical differences, can be both described successfully by partial differential equations, that are, respectively the Fokker-Planck equation and the Hodgkin and Huxley model. With the aid of an advanced engineering software these two processes have been modeled and simulated in order to extract a lot of physical informations about them and to predict a lot of properties that can be, in future, extremely useful during the design stage of both molecular motors and devices which rely their actions on the nervous communications between active fibres.
DIMENSION REDUCTION FOR POWER SYSTEM MODELING USING PCA METHODS CONSIDERING INCOMPLETE DATA READINGS
Resumo:
Principal Component Analysis (PCA) is a popular method for dimension reduction that can be used in many fields including data compression, image processing, exploratory data analysis, etc. However, traditional PCA method has several drawbacks, since the traditional PCA method is not efficient for dealing with high dimensional data and cannot be effectively applied to compute accurate enough principal components when handling relatively large portion of missing data. In this report, we propose to use EM-PCA method for dimension reduction of power system measurement with missing data, and provide a comparative study of traditional PCA and EM-PCA methods. Our extensive experimental results show that EM-PCA method is more effective and more accurate for dimension reduction of power system measurement data than traditional PCA method when dealing with large portion of missing data set.
Resumo:
"COO-1469-0200."
Resumo:
Includes index.
Resumo:
Includes bibliography.
Resumo:
Computer-based, socio-technical systems projects are frequently failures. In particular, computer-based information systems often fail to live up to their promise. Part of the problem lies in the uncertainty of the effect of combining the subsystems that comprise the complete system; i.e. the system's emergent behaviour cannot be predicted from a knowledge of the subsystems. This paper suggests uncertainty management is a fundamental unifying concept in analysis and design of complex systems and goes on to indicate that this is due to the co-evolutionary nature of the requirements and implementation of socio-technical systems. The paper shows a model of the propagation of a system change that indicates that the introduction of two or more changes over time can cause chaotic emergent behaviour.
Resumo:
The work described in this thesis is an attempt to elucidate the relationships between the pore system and a number of engineering properties of hardened cement paste, particularly tensile strength and resistances to carbonation and ionic penetration. By examining aspects such as the rate of carbonisation, the pore size distribution, the concentration of ions in the pore solution and the phase composition of cement pastes, relationships between the pore system (pores and pore solution) and the resistance to carbonation were investigated. The study was carried out in two parts. First, cement pastes with different pore systems were compared, whilst secondly comparisons were made between the pore systems of cement pastes with different degrees of carbonation. Relationships between the pore structure and ionic penetration were studied by comparing kinetic data relating to the diffusion of various ions in cement pastes with different pore systems. Diffusion coefficients and activation energies for the diffusion process of Cl- and Na+ ions in carbonated and non-carbonated cement pastes were determined by a quasi-steady state technique. The effect of the geometry of pores on ionic diffusion was studied by comparing the mechanisms of ionic diffusion for ions with different radii. In order to investigate the possible relationship between tensile strength and macroporosity, cement paste specimens with cross sectional areas less than 1mm2 were produced so that the chance of a macropore existing within them was low. The tensile strengths of such specimens were then compared with those of larger specimens.