1000 resultados para Systèmes non linéaires
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.
Resumo:
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Les lasers à fibre de haute puissance sont maintenant la solution privilégiée pour les applications de découpe industrielle. Le développement de lasers pour ces applications n’est pas simple en raison des contraintes qu’imposent les normes industrielles. La fabrication de lasers fibrés de plus en plus puissants est limitée par l’utilisation d’une fibre de gain avec une petite surface de mode propice aux effets non linéaires, d’où l’intérêt de développer de nouvelles techniques permettant l’atténuation de ceux-ci. Les expériences et simulations effectuées dans ce mémoire montrent que les modèles décrivant le lien entre la puissance laser et les effets non linéaires dans le cadre de l’analyse de fibres passives ne peuvent pas être utilisés pour l’analyse des effets non linéaires dans les lasers de haute puissance, des modèles plus généraux doivent donc développés. Il est montré que le choix de l’architecture laser influence les effets non linéaires. En utilisant l’équation de Schrödinger non linéaire généralisée, il a aussi été possible de montrer que pour une architecture en co-propagation, la diffusion Raman influence l’élargissement spectral. Finalement, les expériences et les simulations effectuées montrent qu’augmenter la réflectivité nominale et largeur de bande du réseau légèrement réfléchissant de la cavité permet d’atténuer la diffusion Raman, notamment en réduisant le gain Raman effectif.
Resumo:
Dans cette thèse, nous sommes intéressés par des problèmes de préservation des applications non-linéaires entre deux algèbres de Banach complexes unitaires A et B. En général, ces problèmes demandent la caractérisation des applications φ : A → B non nécessairement linéaires, qui laissent invariant une propriété, une relation ou un sous-ensemble. Dans le Chapitre 3, la description des applications surjectives φ de B(X) sur B(Y), qui satisfont c(φ(S)±φ(T)) = c(S ± T), (S,T ∈ B(X)), est donnée, où c(·) représente soit le module minimal, ou le module de surjectivité ou le module maximal et B(X) (resp. B(Y)) dénote l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y). Dans le Chapitre 4, une question similaire pour la conorme des opérateurs, est considérée. La caractérisation des applications bicontinues et bijectives φ deB(X) surB(Y), qui satisfont γ(φ(S ± φ(T)) = γ(S ± T), (S,T ∈ B(X)), est obtenue. Le Chapitre 5 est consacré à la description des applications surjectives φ1,φ2 d’une algèbre de Banach semisimple A sur une algèbre de Banach B avec un socle essentiel, qui satisfont σ(φ1(a)φ2(b)) = σ(ab), (a,b ∈ A). Aussi, la caractérisation des applications φ de A sur B, sous les mêmes hypothèses sur A et B, qui satisfont σ(φ(a)φ(b)φ(a)) = σ(aba), (a,b ∈ A), est donnée. Comme conséquences, nous incluons les résultats obtenus au cas des algèbres B(X) et B(Y).
Resumo:
La gestion des risques est souvent appréhendée par l'utilisation de méthodes linéaires mettant l'accent sur des raisonnements de positionnement et de type causal : à tel événement correspond tel risque et telle conséquence. Une prise en compte des interrelations entre risques est souvent occultée et les risques sont rarement analysés dans leurs dynamiques et composantes non linéaires. Ce travail présente ce que les méthodes systémiques et notamment l'étude des systèmes complexes sont susceptibles d'apporter en matière de compréhension, de management et d'anticipation et de gestion des risques d'entreprise, tant sur le plan conceptuel que de matière appliquée. En partant des définitions relatives aux notions de systèmes et de risques dans différents domaines, ainsi que des méthodes qui sont utilisées pour maîtriser les risques, ce travail confronte cet ensemble à ce qu'apportent les approches d'analyse systémique et de modélisation des systèmes complexes. En mettant en évidence les effets parfois réducteurs des méthodes de prise en compte des risques en entreprise ainsi que les limitations des univers de risques dues, notamment, à des définitions mal adaptées, ce travail propose également, pour la Direction d'entreprise, une palette des outils et approches différentes, qui tiennent mieux compte de la complexité, pour gérer les risques, pour aligner stratégie et management des risques, ainsi que des méthodes d'analyse du niveau de maturité de l'entreprise en matière de gestion des risques. - Risk management is often assessed through linear methods which stress positioning and causal logical frameworks: to such events correspond such consequences and such risks accordingly. Consideration of the interrelationships between risks is often overlooked and risks are rarely analyzed in their dynamic and nonlinear components. This work shows what systemic methods, including the study of complex systems, are likely to bring to knowledge, management, anticipation of business risks, both on the conceptual and the practical sides. Based on the definitions of systems and risks in various areas, as well as methods used to manage risk, this work confronts these concepts with approaches of complex systems analysis and modeling. This work highlights the reducing effects of some business risk analysis methods as well as limitations of risk universes caused in particular by unsuitable definitions. As a result this work also provides chief officers with a range of different tools and approaches which allows them a better understanding of complexity and as such a gain in efficiency in their risk management practices. It results in a better fit between strategy and risk management. Ultimately the firm gains in its maturity of risk management.
Resumo:
Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.
Resumo:
Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.
Resumo:
Alors que certains mécanismes pourtant jugés cruciaux pour la transformation de la pluie en débit restent peu ou mal compris, le concept de connectivité hydrologique a récemment été proposé pour expliquer pourquoi certains processus sont déclenchés de manière épisodique en fonction des caractéristiques des événements de pluie et de la teneur en eau des sols avant l’événement. L’adoption de ce nouveau concept en hydrologie reste cependant difficile puisqu’il n’y a pas de consensus sur la définition de la connectivité, sa mesure, son intégration dans les modèles hydrologiques et son comportement lors des transferts d’échelles spatiales et temporelles. Le but de ce travail doctoral est donc de préciser la définition, la mesure, l’agrégation et la prédiction des processus liés à la connectivité hydrologique en s’attardant aux questions suivantes : 1) Quel cadre méthodologique adopter pour une étude sur la connectivité hydrologique ?, 2) Comment évaluer le degré de connectivité hydrologique des bassins versants à partir de données de terrain ?, et 3) Dans quelle mesure nos connaissances sur la connectivité hydrologique doivent-elles conduire à la modification des postulats de modélisation hydrologique ? Trois approches d’étude sont différenciées, soit i) une approche de type « boite noire », basée uniquement sur l’exploitation des données de pluie et de débits sans examiner le fonctionnement interne du bassin versant ; ii) une approche de type « boite grise » reposant sur l’étude de données géochimiques ponctuelles illustrant la dynamique interne du bassin versant ; et iii) une approche de type « boite blanche » axée sur l’analyse de patrons spatiaux exhaustifs de la topographie de surface, la topographie de subsurface et l’humidité du sol. Ces trois approches sont ensuite validées expérimentalement dans le bassin versant de l’Hermine (Basses Laurentides, Québec). Quatre types de réponses hydrologiques sont distingués en fonction de leur magnitude et de leur synchronisme, sachant que leur présence relative dépend des conditions antécédentes. Les forts débits enregistrés à l’exutoire du bassin versant sont associés à une contribution accrue de certaines sources de ruissellement, ce qui témoigne d’un lien hydraulique accru et donc d’un fort degré de connectivité hydrologique entre les sources concernées et le cours d’eau. Les aires saturées couvrant des superficies supérieures à 0,85 ha sont jugées critiques pour la genèse de forts débits de crue. La preuve est aussi faite que les propriétés statistiques des patrons d’humidité du sol en milieu forestier tempéré humide sont nettement différentes de celles observées en milieu de prairie tempéré sec, d’où la nécessité d’utiliser des méthodes de calcul différentes pour dériver des métriques spatiales de connectivité dans les deux types de milieux. Enfin, la double existence de sources contributives « linéaires » et « non linéaires » est mise en évidence à l’Hermine. Ces résultats suggèrent la révision de concepts qui sous-tendent l’élaboration et l’exécution des modèles hydrologiques. L’originalité de cette thèse est le fait même de son sujet. En effet, les objectifs de recherche poursuivis sont conformes à la théorie hydrologique renouvelée qui prône l’arrêt des études de particularismes de petite échelle au profit de l’examen des propriétés émergentes des bassins versants telles que la connectivité hydrologique. La contribution majeure de cette thèse consiste ainsi en la proposition d’une définition unifiée de la connectivité, d’un cadre méthodologique, d’approches de mesure sur le terrain, d’outils techniques et de pistes de solution pour la modélisation des systèmes hydrologiques.
Resumo:
L'objectif ultime en géomorphologie fluviale est d'expliquer les formes des cours d'eau et leur évolution temporelle et spatiale. La multiplication des études nous a mené à la réalisation que les systèmes géomorphologiques sont complexes. Les formes observées sont plus que la somme des processus individuels qui les régissent en raison d’interactions et de rétroactions non-linéaires à de multiples échelles spatiales et temporelles. Dans ce contexte, le but général de la thèse est de proposer et de tester de nouvelles avenues de recherche afin de mieux appréhender la complexité des dynamiques fluviales en utilisant des approches méthodologiques et analytiques mettant l’accent sur les interactions entre l’écoulement, le transport de sédiments en charge fond et la morphologie du lit en rivière graveleuse. Cette orientation découle du constat que les paradigmes actuels en géomorphologie fluviale n’arrivent pas à expliquer adéquatement la variabilité naturelle du transport en charge de fond ainsi que des formes du lit qui en résultent. Cinq pistes de réflexion sont développées sous forme d’articles basés sur des études de cas : 1. L'intégration des échelles de variation de l'écoulement permet d’insérer la notion de structures turbulentes dans des pulsations de plus grande échelle et d'améliorer la compréhension de la variabilité du transport de sédiments. 2. La quantification des taux de changement de l’écoulement (accélération /décélération) au cours d’une crue permet d’expliquer la variabilité des flux de transport en charge fond autant que la magnitude de l’écoulement. 3. L’utilisation de techniques de mesures complémentaires révèle une nouvelle dynamique du lit des rivières graveleuses, la dilatation et la contraction du lit suite à une crue. 4. La remise en cause du fait généralement accepté que le transport en charge de fond est corrélé positivement à l'intensité des modifications morphologiques en raison d’un problème associé aux échelles différentes des processus en cause. 5. L’approche systémique des dynamiques fluviales par l’utilisation d’analyses multivariées permet d’appréhender la complexité des dynamiques de rétroactions linéaires et non-linéaires dans l’évolution d’un chenal et d’illustrer l’importance de l’historique récent des changements géomorphologiques en réponse aux crues. Cette thèse se veut une avancée conceptuelle issue d'une profonde réflexion sur les approches classiques que l'on utilise en géomorphologie fluviale depuis plusieurs décennies. Elle est basée sur un jeu de données unique récolté lors du suivi intensif de 21 évènements de crue dans un petit cours d’eau à lit de graviers, le ruisseau Béard (Québec). Le protocole expérimental axé sur la simultanéité des mesures de l’écoulement, de la morphologie du lit et du transport de sédiments en charge de fond a permis de centrer la recherche directement sur les interactions entre les processus plutôt que sur les processus individuels, une approche rarement utilisée en géomorphologie fluviale. Chacun des chapitres illustre un nouveau concept ou une nouvelle approche permettant de résoudre certaines des impasses rencontrées actuellement en géomorphologie fluviale. Ces travaux ont des implications importantes pour la compréhension de la dynamique des lits de rivières et des habitats fluviaux et servent de point de départ pour de nouveaux développements.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.