2 resultados para Syntrophie
Resumo:
Au cours des dernières décennies, l’intérêt pour la gazéification de biomasses a considérablement augmenté, notamment en raison de la grande efficacité de recouvrement énergétique de ce procédé par rapport aux autres procédés de génération de bioénergies. Les composants majoritaires du gaz de synthèse, le monoxyde de carbone (CO) et l’hydrogène (H2) peuvent entre autres servir de substrats à divers microorganismes qui peuvent produire une variété de molécules chimiques d’intérêts, ou encore produire des biocarburants, particulièrement le méthane. Il est donc important d'étudier les consortiums méthanogènes naturels qui, en syntrophie, serait en mesure de convertir le gaz de synthèse en carburants utiles. Cette étude évalue principalement le potentiel de méthanisation du CO par un consortium microbien issu d’un réacteur de type UASB, ainsi que les voies métaboliques impliquées dans cette conversion en conditions mésophiles. Des tests d’activité ont donc été réalisés avec la boue anaérobie du réacteur sous différentes pressions partielles de CO variant de 0.1 à 1,65 atm (0.09 à 1.31 mmol CO/L), en présence ou absence de certains inhibiteurs métaboliques spécifiques. Dès le départ, la boue non acclimatée au CO présente une activité carboxidotrophique relativement intéressante et permet une croissance sur le CO. Les tests effectués avec de l’acide 2- bromoethanesulfonique (BES) ou avec de la vancomycine démontrent que le CO est majoritairement consommé par les bactéries acétogènes avant d’être converti en méthane par les méthanogènes acétotrophes. De plus, un plus grand potentiel de méthanisation a pu être atteint sous une atmosphère constituée uniquement de CO en acclimatant auparavant la boue. Cette adaptation est caractérisée par un changement dans la population microbienne désormais dominée par les méthanogènes hydrogénotrophes. Ceci suggère un potentiel de production à large échelle de biométhane à partir du gaz de synthèse avec l’aide de biofilms anaérobies.
Resumo:
Die Energiewende ist begleitet von dem Ausbau erneuerbarer Energien. Dabei spielt die Energiegewinnung aus Biomasse eine wichtige Rolle. Der optimale Betrieb einer Biogasanlage erfordert eine stabile Methanproduktion, welche jedoch durch die Akkumulation von Propionsäure nachhaltig gestört werden kann. Aus diesem Grund ist der mikrobielle Abbau dieser Substanz von besonderem Interesse. Die Thermodynamik des anaeroben bakteriellen Abbaus von Propionsäure erfordert die syntrophe Verwertung des entstehenden Wasserstoffs durch Wasserstoff-verbrauchende Mikroorganismen, beispielsweise methanogene Archaea.rnMit dem Ziel, die Erkenntnislage der Propionat-Verwertung in NawaRo-Biogasanlagen zu erweitern, sollten Propionat-verwertende Anreicherungskulturen aus NawaRo-Biogasanlagen etabliert, charakterisiert und molekularbiologisch analysiert werden.rnAus landwirtschaftlichen Biogasanlagen wurden reproduzierbar Propionat-verwertende Anreicherungskulturen mittels anaerober Kultivierungstechniken etabliert. Die anaerob Propionat-verwertende Aktivität der Kulturen blieb über Jahre erhalten und konnte unter verschiedenen Bedingungen charakterisiert werden. Die Analyse der sukzessiven Diversität von vier Anreicherungskulturen ermöglichte einen Einblick in die sich während der Propionat-Verwertung sukzessiv verändernde mikrobielle Diversität. Dabei wurden die aus der 16S rDNA-Analyse resultierenden Sequenzcluster MP-1 (Cryptanaerobacter sp./ Pelotomaculum sp.), MP-6 und MP-15 (beide ''Candidatus Cloacamonas sp. ''), sowie MP-9 (Syntrophobacter sulfatireducens) als potentiell Propionat-verwertende Schlüsselspezies identifiziert. Mit S. sulfatireducens wurde eine bekannte syntroph Propionat-verwertende Spezies gefunden. Die Sequenzen von MP-1 waren nahe verwandt mit Pelotomaculum schinkii, ebenfalls eine beschriebene syntroph Propionat-verwertende Spezies. Bei dem nächsten Verwandten der Cluster MP-6 und MP-15 handelte es sich um ''Candidatus Cloacamonas acidaminovorans'', eine bisher unkultivierbare Spezies, dessen Genom für den gesamten Abbauweg der syntrophen Propionat-Oxidation codiert. Syntrophobacter sulfatireducens kam zusammen mit Vertretern der methanogenen Gattungen Methanoculleus, Methanosaeta und Methanomethylovorans vor. Als methanogener Partner von Cryptanaerobacter sp./ Pelotomaculum sp. dominierte die Gattung Methanosarcina. Aufgrund der starken Präsenz der syntroph Acetat oxidierenden Spezies Tepidanaerobacter acetatoxydans (Sequenz-Cluster MP-3), sowie potentiell homoacetogener Arten, wurde zudem ein theoretischer Zusammenhang der Propionat-Verwertung mit der syntrophen Acetat-Oxidation und der autotrophen Homoacetogenese vorgeschlagen.rn