990 resultados para Synthetic fibers industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information recueillie sur les marchés des drogues de synthèse est beaucoup moins avancée que les études sur d'autres marchés de drogues illicites. La classification relativement récente des drogues de synthèse comme substances illicites, couplée avec ses caractéristiques distinctes qui empêchent son observation, a entravé le développement d’évaluations complètes et fiables des caractéristiques structurelles des marchés. Le but de cet article est de fournir un aperçu fiable sur la dynamique interne du marché des drogues synthétiques, en particulier sur ses caractéristiques structurelles et organisationnelles. En utilisant l'information obtenue à partir de 365 drogues de synthèse saisies par les policiers pendant un an, cette étude sera la fusion de deux techniques, soit la composition des drogues illicites et des analyses économiques, afin de tirer des évaluations fiables des caractéristiques structurelles du marché du Québec de drogues synthétiques. Les résultats concernant l'analyse de la composition des drogues indiquent que le marché des drogues synthétiques au Québec est probablement composé d'un nombre élevé de petites structures, ce qui indique un marché compétitif. L'analyse économique a également fourni des informations complémentaires sur le marché des drogues. Selon la région géographique les couts de la production et les relations entre trafiquant et consommateur influencent le prix des drogues. Les résultats de cette recherche mettent l'accent sur la nécessité de concevoir des politiques qui tient compte des différences régionales dans la production de drogue et reflète la nature compétitive de ce marché.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epichlorohydrin (ECH), an important chemical in the synthetic polymer industry, is a bifunctional alkylating agent with the potential to form DNA interstrand crosslinks. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown to undergo reaction with DNA in vivo and in vitro. We are using denaturing polyacrylamide gel electrophoresis to assess cross-linking of synthetic DNA oligomers by both ECH and the related compound, epibromohydrin (EBH). Both epihalohydrins produce a low-mobility band on denaturing gels consistent with an interstrand cross-link. Moreover, the efficiencies, sequence preferences, reaction kinetics, and pH dependence differ for the two compounds, suggesting different mechanisms of reaction. Understanding these alkylation reactions may help explain the role of the epihalohydrins in cancer development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atualmente, devido à necessidade crescente de materiais de bom desempenho mecânico e devido questões ambientais, busca-se cada vez mais a substituição de fibras sintéticas usadas em compósitos (como a fibra de vidro) por fibras naturais. Uma fibra natural que já vem sendo utilizada pela indústria automobilística é a fibra de Curauá (Ananas erectifolius) e apresenta excelente resistência à tração. Na expectativa de melhorar certas propriedades dos compósitos e de reduzir a quantidade de resina, e desse modo o custo, busca-se também o uso de cargas incorporadas à matriz dos compósitos. Em trabalhos recentes têm-se estudado a lama vermelha (resíduo da indústria da bauxita) como carga devido sua alta disponibilidade e baixo custo, além de ser uma resíduo potencialmente perigoso para o ambiente. O objetivo desse trabalho foi analisar os efeitos da adição de lama vermelha em compósitos de poliéster reforçados com fibras naturais de Curauá (Ananas erectifolius). Os resultados mostraram que a utilização da lama vermelha como carga em proporções volumétricas maiores ou iguais a 20% e fibra de curauá em fração volumétrica de 5% provocou um efeito de reforço significativo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concern with the environment preservation has done with that researchers as well as industries invest in the search for materials that come from renewable sources. Natural fibers, because they are ecologically correct and have low cost, have been studied as a possible substitute, even if partial, of synthetic fibers in the development of polymeric composites. In this context, the hybrid composites (natural/synthetic) increase considerably the range of application of natural composites. The auto industry, in its constant quest for good mechanical properties materials which are developed with sustainability, has in composites with hybrid reinforcement a very viable alternative. In the present work, the nature Crown pineapple fibers and nature Crown pineapple fibers treated with alkaline solution were studied in order to evaluate the influence of chemical treatment in its properties. For this techniques were used x-ray diffractometry, Thermogravimetry and Infrared Spectroscopy (FTIR). Composites have been developed using polypropylene, reinforced with pineapple fibers and pineapple fibers hybrids/glass fibres, both with levels of 5 and 10%. These composites were analyzed by Thermogravimetry techniques and tested by traction. The realization of this work indicated that although the chemical treatment did not affect the thermal stability of the fibers, caused an increase in crystallinity index fibers and decreased its hydrophilic. The tests performed on composite indicated that the composites process was suitable because it provided good dispersion of the polymer matrix. The addition of natural fibers from the pineapple's Crown, in a proportion of 10%, provided the greatest increase in modulus of elasticity (27%) when compared to the pure polymer

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental study on the long-term deformations of the fibre reinforced concrete. Steel and macro-synthetic fibers were used to evaluate the shrinkage, creep, mid-span deflection, cracking and rupture analysis of three different types of samples. At the end the main topics of ACI guidelines were analyzed in order to perform an overview of design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.