910 resultados para Sympatric Speciation
Resumo:
The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.
Resumo:
We have studied an agent model which presents the emergence of sexual barriers through the onset of assortative mating, a condition that might lead to sympatric speciation. In the model, individuals are characterized by two traits, each determined by a single locus A or B. Heterozygotes on A are penalized by introducing an adaptive difference from homozygotes. Two niches are available. Each A homozygote is adapted to one of the niches. The second trait, called the marker trait has no bearing on the fitness. The model includes mating preferences, which are inherited from the mother and subject to random variations. A parameter controlling recombination probabilities of the two loci is also introduced. We study the phase diagram by means of simulations, in the space of parameters (adaptive difference, carrying capacity, recombination probability). Three phases are found, characterized by (i) assortative mating, (ii) extinction of one of the A alleles and (iii) Hardy-Weinberg like equilibrium. We also make perturbations of these phases to see how robust they are. Assortative mating can be gained or lost with changes that present hysteresis loops, showing the resulting equilibrium to have partial memory of the initial state and that the process of going from a polymorphic panmictic phase to a phase where assortative mating acts as sexual barrier can be described as a first-order transition. (C) 2009 Published by Elsevier Ltd.
Resumo:
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.
Resumo:
We investigated a Lake Victoria cichlid with a complex colour polymorphism that apparently represents one original species and two incipient species, all of which are sympatric. In laboratory breeding experiments we observed sex ratio distortion in certain matings between original and incipient species. Mate choice experiments show that males of the incipient species exhibit mating preferences against the original species, and males and females of the original species exhibit strong mating preferences against the incipient species. Mating preferences might evolve by sex ratio selection to avoid matings with distorted progeny sex ratios. Phenotype frequencies in nature suggest that mating preferences translate into mating frequencies, thus restricting gene flow and exerting disruptive sexual selection between the original and incipient species. The incipient species do not differ in morphology or ecology from the original species, implying that colour polymorphism, associated with sex ratio distortion, can be an incipient stage in sympatric speciation, and that disruption of gene flow can precede ecological differentiation
Resumo:
Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.
Resumo:
The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation [1, 2], this mode of diversification remains controversial, at least in part because there are few well-supported examples [3]. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects [4, 5] except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.
Resumo:
Female mate choice has often been proposed to play an important role in cases of rapid speciation, in particular in the explosively evolved haplochromine cichlid species flocks of the Great Lakes of East Africa. Little, if anything, is known in cichlid radiations about the heritability of female mating preferences. Entirely sympatric distribution, large ecological overlap and conspicuous differences in male nuptial coloration, and female preferences for these, make the sister species Pundamilia pundamilia and P. nyererei from Lake Victoria an ideally suited species pair to test assumptions on the genetics of mating preferences made in models of sympatric speciation. Female mate choice is necessary and sufficient to maintain reproductive isolation between these species, and it is perhaps not unlikely therefore, that female mate choice has been important during speciation. A prerequisite for this, which had remained untested in African cichlid fish, is that variation in female mating preferences is heritable. We investigated mating preferences of females of these sister species and their hybrids to test this assumption of most sympatric speciation models, and to further test the assumption of some models of sympatric speciation by sexual selection that female preference is a single-gene trait. We find that the differences in female mating preferences between the sister species are heritable, possibly with quite high heritabilities, and that few but probably more than one genetic loci contribute to this behavioural speciation trait with no apparent dominance. We discuss these results in the light of speciation models and the debate about the explosive radiation of cichlid fishes in Lake Victoria.
Resumo:
Determining the genetic bases of adaptations and their roles in speciation is a prominent issue in evolutionary biology. Cichlid fish species flocks are a prime example of recent rapid radiations, often associated with adaptive phenotypic divergence from a common ancestor within a short period of time. In several radiations of freshwater fishes, divergence in ecomorphological traits - including body shape, colour, lips and jaws - is thought to underlie their ecological differentiation, specialization and, ultimately, speciation. The Midas cichlid species complex (Amphilophus spp.) of Nicaragua provides one of the few known examples of sympatric speciation where species have rapidly evolved different but parallel morphologies in young crater lakes. This study identified significant QTL for body shape using SNPs generated via ddRAD sequencing and geometric morphometric analyses of a cross between two ecologically and morphologically divergent, sympatric cichlid species endemic to crater Lake Apoyo: an elongated limnetic species (Amphilophus zaliosus) and a high-bodied benthic species (Amphilophus astorquii). A total of 453 genome-wide informative SNPs were identified in 240 F-2 hybrids. These markers were used to construct a genetic map in which 25 linkage groups were resolved. Seventy-two segregating SNPs were linked to 11 QTL. By annotating the two most highly supported QTL-linked genomic regions, genes that might contribute to divergence in body shape along the benthic-limnetic axis in Midas cichlid sympatric adaptive radiations were identified. These results suggest that few genomic regions of large effect contribute to early stage divergence in Midas cichlids.
Resumo:
Although new empirical evidence shows that sympatric speciation has occurred in some species, there are few indisputable model organisms for this process of speciation. The two subspecies (Gymnocypris eckloni eckloni and G. e. scoliostomus) of the schizothoracine Gymnocypris fish species complex from a small glacier lake in the Tibetan Plateau, Lake Sunmcuo, fit several of the key characteristics of the sympatric speciation model. We used combined mitochondrial control region sequences and the cytochrome b gene (1894 bp) to address the phylogenetics and population genetics of 232 specimens of G. e. eckloni and G. e. scoliostomus, as well as all of its closely related sister species. We found that: (i) a total of four old lineages were uncovered in the widespread G. e. eckloni, of which only one was shown to be shared with all G. e. scoliostomus individuals and (ii) the new subspecies (G. e. scoliostomus) evolved in Lake Sunmcuo from the ancestral G. e. eckloni population within approximately 0.057 Ma. These two taxa of the species complex are morphologically distinct, and reproductive isolation is further suggested. Ecological disruptive selection based on morphological traits (e.g. mouth cleft characters) and food utilization may be a mechanism of incipient speciation of two sympatric populations within Lake Sunmcuo. This study provides the first genetic evidence for sympatric speciation in the schizothoracine fish.
Resumo:
The hypothesis of sympatric speciation by sexual selection has been contentious. Several recent theoretical models of sympatric speciation by disruptive sexual selection were tailored to apply to African cichlids. Most of this work concludes that the genetic architecture of female preference and male trait is a key determinant of the likelihood of disruptive sexual selection to result in speciation. We investigated the genetic architecture controlling male nuptial colouration in a sympatric sibling species pair of cichlid fish from Lake Victoria, which differ conspicuously in male colouration and female mating preferences for these. We estimated that the difference between the species in male nuptial red colouration is controlled by a minimum number of two to four genes with significant epistasis and dominance effects. Yellow colouration appears to be controlled by one gene with complete dominance. The two colours appear to be epistatically linked. Knowledge on how male colouration segregates in hybrid generations and on the number of genes controlling differences between species can help us assess whether assumptions made in simulation models of sympatric speciation by sexual selection are realistic. In the particular case of the two sister species that we studied a small number of genes causing major differences in male colouration may have facilitated the divergence in male colouration associated with speciation.
Resumo:
Ancient lakes are often unusually species rich, mostly as a result of radiation and species-flock formation having taken place in only one or a few of many taxa present. Understanding why some taxa radiate and others do not is at the heart of understanding biodiversity. In this chapter I discuss possible explanations for disproportionally large species numbers in some cichlid fish lineages in East African Great Lakes: the halochromine cichlid fishes in Lakes Victoria and Malawi. I show that speciation rates in this group are higher than in any other lacustrine fish radiation. Against this background, I review hypotheses put forward to explain diversity in cichlid species flocks. The evolution of species diversity requires three processes: speciation, ecological radiation and anatomical diversification, and it is wrong to consider hypotheses that are relevant to different processes as alternatives to each other. The African cichlid species flocks show unusually high ecological species packing in several phylogenetic groups and unusually high speciation rates in haplochromines. Therefore, it maybe concluded that at least two evolutionary models are required to explain the difference between cichlid diversity and other fish diversity in East African Lakes: one for speciation in haplochromines and one for coexistence. Subsequently I review work on speciation in haplochromines, and in particular studies aimed at testing the hypothesis of speciation by sexual selection. Haplochromines have a polygynous mating system, conducive to sexual selection, but other polygynous cichlids are not particularly species rich. This suggests that more than just strong sexual selection is required to explain haplochromine species richness. Recent palaeoecological evidence undermines the previously popular hypotheses that explained the species richness of Lake Victoria in terms of speciation under varying natural or sexual selection regimes in satellite lakes or in isolated lake basins. I summarize experimental and comparative studies, which provide evidence for two mechanisms of sympatric speciation by disruptive sexual selection on polymorphic coloration. Such modes of speciation may explain (i) the high speciation rates in colour polymorphic lineages of haplochromine cichlids under conditions where colour variation is visible in clear water, and (ii) in combination with factors that affect population survival, the unusual species richness in haplochromine species flocks. I argue that sexual selection, if disruptive, can accelerate the pace of adaptive radiation because the resultant genetic population fragmentation allows a much increased rate of differential response to disruptive natural selection. Hence, the ecological pattern of diversity resembles that produced by disruptive natural selection, with the difference that disruptive sexual selection continues to cause (gross) speciation even after niche space is saturated. This may explain the unusually high numbers of very closely related and ecologically similar species in haplochromine species flocks. The role of disruptive sexual selection is twofold: it not only causes speciation, but also maintains reproductive isolation in sympatry between species that have evolved in sympatry or allopatry. Therefore, the maintenance of diversity in species flocks that originated through sexual selection depends on the persistence of the selection regime within the environmental signal space under which that diversity evolved.
Resumo:
Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.
Resumo:
Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.