922 resultados para Swine influenza A virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A swine H3N2 (swH3N2) and pandemic (H1N1) 2009 (pH1N1) influenza A virus reassortant (swH3N2/ pH1N1) was detected in Canadian swine at the end of 2010. Simultaneously, a similar virus was also detected in Canadian mink based on partial viral genome sequencing. The origin of the new swH3N2/pH1N1 viral genes was related to the North American swH3N2 triple-reassortant cluster IV (for hemagglutinin [HA] and neuraminidase [NA] genes) and to pH1N1 for all the other genes (M, NP, NS, PB1, PB2, and PA). Data indicate that the swH3N2/pH1N1 virus can be found in several pigs that are housed at different locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2007, an H3N2 influenza A virus was isolated from Canadian mink. This virus was found to be phylogenetically related to a triple reassortant influenza virus which emerged in Canadian swine in 2005, but it is antigenically distinct. The transmission of the virus from swine to mink seems to have occurred following the feeding of animals with a ration composed of uncooked meat by-products of swine obtained from slaughterhouse facilities. Serological analyses suggest that the mink influenza virus does not circulate in the swine population. Presently, the prevalence of influenza virus in Canadian farmed and wild mink populations is unknown. The natural occurrence of influenza virus infection in mink with the presence of clinical signs is a rare event that deserves to be reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymptomatic influenza virus infections in pigs are frequent and the lack of measures for controlling viral spread facilitates the circulation of different virus strains between pigs. The goal of this study was to demonstrate the circulation of influenza A virus strains among asymptomatic piglets in an abattoir in Brazil and discuss the potential public health impacts. Tracheal samples (n = 330) were collected from asymptomatic animals by a veterinarian that also performed visual lung tissue examinations. No slaughtered animals presented with any noticeable macroscopic signs of influenza infection following examination of lung tissues. Samples were then analysed by reverse transcription-polymerase chain reaction that resulted in the identification of 30 (9%) influenza A positive samples. The presence of asymptomatic pig infections suggested that these animals could facilitate virus dissemination and act as a source of infection for the herd, thereby enabling the emergence of influenza outbreaks associated with significant economic losses. Furthermore, the continuous exposure of the farm and abattoir workers to the virus increases the risk for interspecies transmission. Monitoring measures of swine influenza virus infections and vaccination and monitoring of employees for influenza infection should also be considered. In addition regulatory agencies should consider the public health ramifications regarding the potential zoonotic viral transmission between humans and pigs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swine influenza (SI) is caused by the type A swine influenza virus (SIV). It is a highly contagious disease with a rapid course and recovery. The major clinical signs and symptoms are cough, fever, anorexia and poor performance. The disease has been associated with other co-infections in many countries, but not in Brazil, where, however, the first outbreak has been reported in 2011. The main aim of this study was to characterize the histological features in association with the immunohistochemical (IHC) results for influenza A (IA), porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) in lung samples from 60 pigs submitted to Setor de Patologia Veterinária at the Universidade Federal do Rio Grande do Sul (SPV-UFRGS), Brazil, during 2009-2010. All of these lung samples had changes characterized by interstitial pneumonia with necrotizing bronchiolitis, never observed previously in the evaluation of swine lungs in our laboratory routine. Pigs in this study had showed clinical signs of a respiratory infection. Swine samples originated from Rio Grande do Sul 31 (52%), Santa Catarina 14 (23%), Paraná 11 (18%), and Mato Grosso do Sul 4 (7%). Positive anti-IA IHC labelling was observed in 45% of the cases, which were associated with necrotizing bronchiolitis, atelectasis, purulent bronchopneumonia and hyperemia. Moreover, type II pneumocyte hyperplasia, alveolar and bronchiolar polyp-like structures, bronchus-associated lymphoid tissue (BALT) hyperplasia and pleuritis were the significant features in negative anti-IA IHC, which were also associated with chronic lesions. There were only two cases with positive anti-PCV2 IHC and none to PRRSV. Therefore, SIV was the predominant infectious agent in the lung samples studied. The viral antigen is often absent due to the rapid progress of SI, which may explain the negative IHC results for IA (55%); therefore, IHC should be performed at the beginning of the disease. This study has shown how important a careful histological evaluation is for the diagnosis. Since 2009, a new histological feature of swine pneumonia in animals with respiratory clinical signs has been observed in samples from pigs with clinical respiratory disease submitted to SPV-UFRGS. In addition, the results proved the importance of histological evaluation for swine herd health management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fulminant myocarditis associated with influenza A virus is exceedingly rare, with only a few cases reported in the literature. We describe a previously healthy 10-year-old boy, with a three-day history of flu-like symptoms without antiviral treatment. He was hospitalized with dehydration and hypothermia in the context of persistent vomiting, when he suddenly developed heart failure secondary to fulminant myocarditis. Despite aggressive management, including circulatory support and cardiopulmonary resuscitation measures, the patient died of cardiogenic shock. The postmortem histopathology was compatible with a multisystem viral infection with myocarditis and pulmonary involvement, and H1N1v polymerase chain reaction was positive. The prevalence of influenza-associated fulminant myocarditis remains unknown. Findings reported in the literature raise the possibility that the novel H1N1 influenza A virus is more commonly associated with a severe form of myocarditis than previously encountered influenza strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In February 2012, an outbreak of respiratory illness occurred on the cruise ship MSC Armonia in Brazil. A 31-year-old female crew member was hospitalized with respiratory failure and subsequently died. To study the etiology of the respiratory illness, tissue taken at necropsy from the deceased woman and respiratory specimens from thirteen passengers and crew members with respiratory symptoms were analyzed. Influenza real-time RT-PCR assays were performed, and the full-length hemagglutinin (HA) gene of influenza-positive samples was sequenced. Influenza B virus was detected in samples from seven of the individuals, suggesting that it was the cause of this respiratory illness outbreak. The sequence analysis of the HA gene indicated that the virus was closely related to the B/Brisbane/60/2008-like virus, Victoria lineage, a virus contained in the 2011-12 influenza vaccine for the Southern Hemisphere. Since the recommended composition of the influenza vaccine for use during the 2013 season changed, an intensive surveillance of viruses circulating worldwide is crucial. Molecular analysis is an important tool to characterize the pathogen responsible for an outbreak such as this. In addition, laboratory disease surveillance contributes to the control measures for vaccine-preventable influenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivityin vitro Recently, we reported that inactivation of a single HA-activating protease gene,Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection ofTmprss2knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion ofTmprss4alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast,Tmprss2(-/-)Tmprss4(-/-)double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virusin vivo IMPORTANCE: Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously thatTmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes,Tmprss2andTmprss4, strongly reduced viral spread as well as lung pathology and resulted in increased survival after H3N2 virus infection. Thus, TMPRSS4 represents another host cell factor that is involved in cleavage activation of H3N2 influenza virusesin vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that most isolates of influenza A induce filamentous changes in infected cells in contrast to A/WSN/33 and A/PR8/34 strains which have undergone extensive laboratory passage and are mouse-adapted. Using reverse genetics, we created recombinant viruses in the naturally filamentous genetic background of A/Victoria/3/75 and established that this property is regulated by the M1 protein sequence, but that the phenotype is complex and several residues are involved. The filamentous phenotype was lost when the amino acid at position 41 was switched from A to V, at the same time, this recombinant virus also became insensitive to the antibody 14C2. On the other hand, the filamentous phenotype could be fully transferred to a virus containing RNA segment 7 of the A/WSN/33 virus by a combination of three mutations in both the amino and carboxy regions of the M1 protein. This observation suggests that an interaction among these regions of M1 may occur during assembly. (C) 2004 Elsevier Inc. All rights reserved.