52 resultados para Swans


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swan’s Lagoon, which is 125 km south-south-west of Townsville, was purchased by the Queensland Government as a beef cattle research station in 1961. It is situated within the seasonally-dry tropical spear grass region of North Queensland. The station was expanded from 80 km2 to 340 km2 by purchase of the adjoining Expedition block in 1978. The first advisory committee formed and initiated research in 1961. The median annual rainfall of 708 mm (28 inches) is highly variable, with over 80% usually falling in December–April. Annual evaporation is 2.03 metres. The 60% of useable area is mostly flat with low fertility duplex soils, of which more than 50% is phosphorus deficient. Natural spear grass-based pastures predominate over the station. Swan’s Lagoon research has contributed to understanding the biology of many aspects of beef production for northern Australia. Research outcomes have provided options to deal with the region’s primary challenges of weaning rates averaging less than 60%, annual growth rates averaging as little as 100 kg, high mortality rates and high management costs. All these relate to the region’s variable and highly seasonal rainfall—challenges that add to insect-borne viruses, ticks, buffalo fly and internal parasites. As well as the vast amount of practical beef production science produced at Swan’s Lagoon, generations of staff have been trained there to support beef producers throughout Queensland and northern Australia to increase their business efficiency. The Queensland Government has provided most of the funds for staffing and operations. Strong beef industry support is reflected in project funding from meat industry levies, managed by Meat and Livestock Australia (MLA) and its predecessors. MLA has consistently provided the majority of operational research funding since the first grant for ‘Studies of management practices, adaption of different breeds and strains to tropical environments, and studies on tick survival and resistance’ in 1962–63. A large number of other agencies and commercial companies have also supported research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During periods of high energy demand an animal may be constrained by a physiological maximum to its energy intake rate. Predictions by allometric equations describing this maximum for endotherms were significantly surpassed during a few recent laboratory experiments on birds and mammals, being given access to food 24 h day-1. How relevant this is in the field remains to be assessed. We predicted that Bewick’s swans Cygnus columbianus bewickii might surpass this maximum during stopover on their migration. We determined intake rate by measuring initial and final biomass density, and dividing the biomass difference by the feeding time required to reach this difference. This feeding time was given by the functional response. After conversion to daily energy intake rates, these exceeded the previously assumed maximum on two of the three stopover sites studied. The exception was a stopover site where daily foraging time was limited by the tidal cycle. Our study confirms that intake rates may exceed the formerly generally supposed maximum under natural conditions when foraging is possible day and night.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1.  Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates.

2.  Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint.

3.  The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently.

4.  These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters.

5.  Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time.

6.  These changes doubled the birds’ absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality).

7.  The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective conservation of important bird areas requires insight in the number of birds an area can support, and how this carrying capacity changes with habitat modifications. When food depletion is the dominant mechanism of competition, it should in principle be possible to calculate the total time foragers can spend per patch from their functional response (intake rate as a function of food density). However, in the field there are likely to be factors modulating the functional response. In this study previously published results of experiments on captive Bewick's swans were used to obtain functional responses of swans digging for tubers of Fennel pondweed on different foraging substrates: sandy and clayey sediment, and in shallow and deep water. In a field study, four 250×250 m sections belonging to different types (sandy–shallow, clayey–shallow, sandy–deep and clayey–deep) were delineated. Here tubers were sampled with sediment corers in three years, both before and after swan exploitation in autumn, and swans were observed and mapped from a hide in two of these years. Giving-up tuber biomass densities varied among sections. Substitution of these giving-up densities in the derived patch-type-specific functional responses yielded the quitting net energy intake rates in the four sections. As expected from the marginal value theorem, the quitting net energy intake rates did not vary among sections. Moreover, the observed foraging pressure (total foraging time per area) per patch type was in quantitative agreement with the integrated functional responses. These results suggest that in spatially heterogeneous environments, patch exploitation by foragers can be predicted from their functional responses after accounting for foraging substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep burial in the sediment of tubers of fennel pondweed (Potamogeton pectinatus) has been explained in terms of avoidance by escape against consumption by Bewick's swans (Cygnus columbianus bewickii) in autumn. We therefore expected changes in foraging pressure to ultimately result in a change in the tuber distribution across sediment depth. A trade-off underlies this idea: deep tubers are less accessible to swans but must be larger to meet the higher energy demands of sprouting in spring. To test this prediction, we compared tuber burial depth over a gradient of foraging pressure both across space and across time. Tuber samples were obtained after aboveground plant senescence but before arrival of Bewick's swans. First, we compared the current tuber bank depth profile in a shallow lake with high foraging pressure, the Lauwersmeer, with that in two wetlands with moderate and low foraging pressure. Second, we compared the current tuber burial in the Lauwersmeer with that in the early 1980s when exploitation by swans had just started there. In accordance with our hypothesis, we found significantly deeper burial of tubers under high consumption risk compared to low consumption risk, both when comparing sites and comparing time periods. Since tubers in effect only survive to the next spring, the observed differences in burial depth among sites and over time cannot be a direct result of tuber losses due to consumption by swans. Rather, these observations suggest adaptive responses in tuber burial related to foraging pressure from Bewick's swans in the recent past. We thus propose that fennel pondweed exhibits flexible avoidance by escape, of a kind rarely described for plants, where both phenotypic plasticity and genotype sorting may contribute to the observed differences in tuber burial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The daily metabolizable energy intake of an animal is potentially limited by either the available feeding time or by its capacity to process energy. Animals are generally considered not to be time-limited but rather to be energy-processing-limited. This is concluded from the common observation that an animal's feeding time per day increases with a decrease in food density. We argue that such changes in feeding time are in theory also expected when no constraints are operating. Thus, a study of the constraints on energy intakes of free-living animals should be performed during demanding phases of the year. As an example, we collected data on time and energy budgets of Bewick's swan (Cygnus columbianus bewickii) refuelling during migration on fennel pondweed (Potamogeton pectinatus) tubers in two years differing two-fold in tuber biomass density. As predicted by time limitation, the feeding time (defined as the time with the head submerged) did not change in response to a change in food biomass density, both within and between years (averaging 12.2 h d−1). Contrary to energy-processing limitation, and again in line with time limitation, the daily metabolizable energy intake varied, being greater in the year with high than in the year with low food densities. We conclude that more studies are needed of animals operating under demanding conditions before it can be assessed whether free-living animals are generally energy-processing- or time-limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited, even for important zoonotic host-pathogen systems, owing to the intractability of host status prior to infection. Using novel applications of stable isotope ecology and eco-immunology, we distinguish antecedent behavioural and physiological traits associated with avian influenza virus (AIV) infection in free-living Bewick's swans (Cygnus columbianus bewickii). Swans infected with AIV exhibited higher serum δ13C (-25.3 ± 0.4) than their non-infected counterparts (-26.3±0.2). Thus, individuals preferentially foraging in aquatic rather than terrestrial habitats experienced a higher risk of infection, suggesting that the abiotic requirements of AIV give rise to heterogeneity in pathogen exposure. Juveniles were more likely to be infected (30.8% compared with 11.3% for adults), shed approximately 15-fold higher quantity of virus and exhibited a lower specific immune response than adults. Together, these results demonstrate the potential for heterogeneity in infection to have a profound influence on the dynamics of pathogens, with concomitant impacts on host habitat selection and fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deeper burial of bulbs and tubers has been suggested as an escape against below-ground herbivory by vertebrates, but experimental evidence is lacking. As deep propagule burial can incur high costs of emergence after dormancy, burial depth may represent a trade-off between sprouting survival and herbivore avoidance. We tested whether burial depth of subterraneous tubers is a flexible trait in fennel pondweed (Potamogeton pectinatus), facing tuber predation by Bewick's swans (Cygnus columbianus bewickii) in shallow lakes in winter. In a four-year experiment involving eight exclosures, winter herbivory by swans and all vertebrate summer herbivory were excluded in a full-factorial design; we hence controlled for aboveground vertebrate herbivory in summer, possibly influencing tuber depth. Tuber depth was measured each September before swan arrival and each March before tuber sprouting. In accordance with our hypothesis, tuber depth in September decreased after excluding Bewick's swans in comparison to control plots. The summer exclosure showed an increase in tuber biomass and the number of shallow tubers, but not a significant effect on the mean burial depth of tuber mass. Our results suggest that a clonal plant like P. pectinatus can tune the tuber burial depth to predation pressure, either by phenotypic plasticity or genotype sorting, hence exhibiting flexible avoidance by escape. We suggest that a flexible propagule burial depth can be an effective herbivore avoidance strategy, which might be more widespread among tuber forming plant species than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many animals, response to predators occurs at greater distances the further an individual is from a refuge, but this has rarely been investigated in birds. Here, we test the hypothesis that the further from refuge (i.e. water) a foraging black swan Cygnus atratus is situated, the longer its flight initiation distance (FID) in response to a pedestrian approach on land. As predicted, swans situated farther from water exhibited longer FIDs compared with those closer to the shore. In addition, there was the possibility of an interesting interaction effect (p < 0.061) of sex and direction of approach on FID. Whilst males tended to not alter their response in relation to the angle of approach relative to the water, females tended to respond at longer distances, when approached from the shore than when approached from the land or parallel to the shore. This is one of the first reports of sex differences in FIDs for birds, with sex differences only manifesting themselves under certain approach types. Group size, the order of repeated approaches, and time of day did not influence responses, although starting distance of approach was positively related to FID.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the vast majority of migratory bird species studied so far, spring migration has been found to proceed faster than autumn migration. In spring, selection pressures for rapid migration are purportedly higher, and migratory conditions such as food supply, daylength, and/or wind support may be better than in autumn. In swans, however, spring migration appears to be slower than autumn migration. Based on a comparison of tundra swan Cygnus columbianus tracking data with long-term temperature data from wheather stations, it has previously been suggested that this was due to a capital breeding strategy (gathering resources for breeding during spring migration) and/or to ice cover constraining spring but not autumn migration. Here we directly test the hypothesis that Bewick's swans Cygnus columbianus bewickii follow the ice front in spring, but not in autumn, by comparing three years of GPS tracking data from individual swans with concurrent ice cover data at five important migratory stop-over sites. In general, ice constrained the swans in the middle part of spring migration, but not in the first (no ice cover was present in the first part) nor in the last part. In autumn, the swans migrated far ahead of ice formation, possibly in order to prevent being trapped by an early onset of winter. We conclude that spring migration in swans is slower than autumn migration because spring migration speed is constrained by ice cover. This restriction to spring migration speed may be more common in northerly migrating birds that rely on freshwater resources. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick's swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swan's location was recorded in flight, average flight altitude was 165 m a.s.1. with a maximum of 759 m a.s.1., despite winds often being more favourable at higher altitudes. We also counted Bewick's swans departing from the Gulf of Finland and subsequently passing an observatory in the next major stop-over area 800 km further north in the White Sea, northern Russia, during the springs of 1994, 1995 and 1996. A comparison of these counts with wind data provided evidence for Bewick's swans using favourable changes in wind conditions to embark on migration. Changes in the numbers of birds arriving in the White Sea correlated best with favourable changes in winds in the Gulf of Finland 1 day earlier. Again, migratory volume showed a correlation with winds at low altitudes only, despite wind conditions for the swans being more favourable at high altitudes. We conclude that the relatively large Bewick's swan tends to gear its migration to wind conditions at low altitude only. We argue that Bewick's swans do not climb to high altitudes because of mechanical and physiological limitations with respect to the generation of power for flight and to avoid rapid dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some migratory birds refuel at stopover sites that they by-pass on the return trip. In theory, this skipping behaviour is only expected in time-selected migrants when the overflown site is of a lower quality than the departure site. We provide empirical evidence that quality differences in stopover sites are the cause for skipping in Bewick's Swans Cygnus bewickii tracked by satellite telemetry. Two and five complete tracks were recorded in spring and autunm, respectively, showing that the White Sea was visited for c. 2 weeks in spring, but by-passed (or visited for a few days at the most) in autumn. Skipping of the White Sea in autumn was predicted by a dynamic programming model which was based on calculated gain rates during stopover in the Pechora Delta and the White Sea. This prediction was not sensitive to plausible variations in gain rates. Relative to the Pechora Delta the White Sea is a poor site because a large tidal amplitude precludes foraging on the beds of the submerged macrophyte Fennel Pondweed Potamogeton pectinatus during high tide. The dynamic programming model predicted a fast autunm migration. However, the phenology of autunm arrival dates of Bewick's Swans on the wintering grounds revealed that only in three out of ten years a significant number of birds was able to reach the wintering grounds without refuelling. In the other years, unfavourable wind conditions along the Russian/Baltic part of the route prevented such non-stop migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested whether the spatial variation in resource depletion by Tundra Swans (Cygnus columbianus) foraging on belowground tubers of sago pondweed (Potamogeton pectinatus) was caused by differences in net energy intake rates. The variation in giving-up densities within the confines of one lake was nearly eightfold, the giving-up density being positively related to water depth and, to a lesser extent, the silt content of the sediment. The swans' preference (measured as cumulative foraging pressure) was negatively related to these variables. We adjusted a model developed for diving birds to predict changes in the time allocation of foraging swans with changes in power requirements and harvest rate. First, we compared the behavior of free-living swans foraging in shallow and deep water, where they feed by head-dipping and up-ending, respectively. Up-ending swans had 1.3-2.1 times longer feeding times than head-dipping swans. This was contrary to our expectation, since the model predicted a decrease in feeding time with an increase in feeding power. However, up-ending swans also had 1.9 times longer trampling times than headdipping swans. The model predicted a strong positive correlation between trampling time and feeding time, and the longer trampling times may thus have masked any effect of an increase in feeding power. Heart rate measurements showed that trampling was the most energetically costly part of foraging. However, because the feeding time and trampling time changed concurrently, the rate of energy expenditure was only slightly higher in deep water (1.03-1.06 times). This is a conservative estimate since it does not take into account that the feeding costs of up-ending are possibly higher than that of head-dipping. Second, we compared captive swans foraging on sandy and clayey sediments. We found that the harvest rate on clayey sediment was only 0.6 times that on sandy sediment and that the power requirements for foraging were 1.2-1.4 times greater. Our results are in qualitative agreement with the hypothesis that the large spatial variation in giving-up densities was caused by differences in net rates of energy intake. This potentially has important implications for the prey dynamics, because plant regrowth has been shown to be related to the same habitat factors (water depth and sediment type).