919 resultados para Sustained release


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the potential therapeutic role of the naturally occurring sugar heparan sulfate (HS) for the augmentation of bone repair. Scaffolds comprising fibrin glue loaded with 5 lg of embryonically derived HS were assessed, firstly as a release-reservoir, and secondly as a scaffold to stimulate bone regeneration in a critical size rat cranial defect. We show HS-loaded scaffolds have a uniform distribution of HS, which was readily released with a typical burst phase, quickly followed by a prolonged delivery lasting several days. Importantly, the released HS contributed to improved wound healing over a 3-month period as determined by microcomputed tomography (lCT) scanning, histology, histomorphometry, and PCR for osteogenic markers. In all cases, only minimal healing was observed after 1 and 3 months in the absence of HS. In contrast, marked healing was observed by 3 months following HS treatment, with nearly full closure of the defect site. PCR analysis showed significant increases in the gene expression of the osteogenic markers Runx2, alkaline phosphatase, and osteopontin in the heparin sulfate group compared with controls. These results further emphasize the important role HS plays in augmenting wound healing, and its successful delivery in a hydrogel provides a novel alternative to autologous bone graft and growth factorbased therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of growth factor delivery strategies to circumvent the burst release phenomenon prevalent in most current systems has driven research towards encapsulating molecules in resorbable polymer matrices. For these polymer release techniques to be efficacious in a clinical setting, several key points need to be addressed. This present study has investigated the encapsulation of the growth factor, BMP-2 within PLGA/PLGA-PEG-PLGA microparticles. Morphology, size distribution, encapsulation efficiency and release kinetics were investigated and we have demonstrated a sustained release of bioactive BMP-2. Furthermore, biocompatibility of the PLGA microparticles was established and released BMP-2 was shown to promote the differentiation of MC3T3-E1 cells towards the osteogenic lineage to a greater extent than osteogenic supplements (as early as day 10 in culture), as determined using alkaline phosphatase and alizarin red assays. This study showcases a potential BMP-2 delivery system which may now be translated into more complex delivery systems, such as 3D, mechanically robust scaffolds for bone tissue regeneration applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 x 10(-4) h(-1) over similar to 1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-alpha and IL-1 beta), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial adhesion to silicone elastomer biomaterials is a major problem often resulting in infection and medical device failure. Several strategies have been employed to modulate eukaryotic cell adhesion and to hamper bacterial adherence to polymeric biomaterials. Chemical modification of the surface by grafting of polyethylene glycol (PEG) chains or the incorporation of non-antibiotic antimicrobial agents such as triclosan into the biomaterial matrix may reduce bacterial adhesion. Here, such strategies are simultaneously applied to the preparation of both condensation-cure and addition-cure silicone elastomer systems, seeking a sustained release antimicrobial device biomaterial. The influence of triclosan incorporation and degree of pegylation on antimicrobial release, surface microbial adherence and persistence (Escherichia coli and Staphylococcus epidermidis) were evaluated in vitro. Non-pegylated silicone elastomers provided an increased percentage release of triclosan extending over a relatively short duration (99% release by day 64) compared with their pegylated (4% w/w) counterparts (65% and 72% release by day 64, for condensation and addition-cure systems respectively). Viable E. coli adherence to a non-pegylated silicone elastomer containing 1% w/w triclosan was reduced by over 99% after 24 h compared to the non-pegylated silicone elastomer containing no triclosan. No viable S. epidermidis adhered to any of the triclosan-loaded (>0.1% w/w) formulations other than the control. Persistence of the antimicrobial activity of the triclosan-loaded pegylated silicone elastomers continued for at least 70 days compared to the triclosan-loaded non-pegylated elastomers (at least 49 days). Understanding how PEG affects the release of triclosan from silicone elastomers may prove useful in the development of a biomaterial providing prolonged, effective antimicrobial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new vaginal ring technology, the insert vaginal ring (InVR), is presented. The InVR overcomes the current shortfall of conventional vaginal rings (VRs) that are generally ineffectual for the delivery of hydrophilic and/or macromolecular actives, including peptides, proteins and antibodies, due to their poor permeation characteristics in the hydrophobic polymeric elastomers from which VRs are usually fabricated. Release of the model protein BSA from a variety of insert matrices for the InVR is demonstrated, including modified silicone rods, directly compressed tablets and lyophilised gels, which collectively provided controlled release profiles from several hours to beyond 4 weeks. Furthermore, the InVR was shown to deliver over 1 mg of the monoclonal antibody 2F5 from a single device, offering a potential means of protecting women against the transmission of HIV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for prevention of sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of the entry inhibitors maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously over 28 days from rings in vitro, at rates of 100-2500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady state fluid concentrations were ~106 fold greater than IC50 values for SHIV-162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. Pretreatment of macaques with Depo-Provera® (DP), as commonly used in macaque challenge studies, was shown to significantly modify the bio-distribution of the inhibitors, but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments, and also for ring performance during the human female menstrual cycle. Copyright © 2012, American Society for Microbiology. All Rights Reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained-release matrix tablets based on Eudragit RL and RS were manufactured by injection moulding. The influence of process temperature; matrix composition; drug load, plasticizer level; and salt form of metoprolol: tartrate (MPT), fumarate (MPF) and succinate (MPS) on ease of processing and drug release were evaluated. Formulations composed of 70/30% Eudragit RL/MPT showed the fastest drug release, substituting part of Eudragit RL by RS resulted in slower drug release, all following first-order release kinetics. Drug load only affected drug release of matrices composed of Eudragit RS: a higher MPT concentration yielded faster release rates. Adding triethyl citrate enhanced the processability, but was detrimental to long-term stability. The process temperature and plasticizer level had no effect on drug release, whereas metoprolol salt form significantly influenced release properties. The moulded tablets had a low porosity and a smooth surface morphology. A plasticizing effect of MPT, MPS and MPF on Eudragit RS and Eudragit RL was observed via DSC and DMA. Solubility parameter assessment, thermal analysis and X-ray diffraction demonstrated the formation of a solid solution immediately after production, in which H-bonds were formed between metoprolol and Eudragit as evidenced by near-infrared spectroscopy. However, high drug loadings of MPS and MPF showed a tendency to recrystallise during storage. The in vivo performance of injection-moulded tablets was strongly dependent upon drug loading. © 2012 American Association of Pharmaceutical Scientists.