996 resultados para Susceptibility testing
Resumo:
Background: Helicobacter pylori ClariRes assay is a novel commercially available real-time PCR assay allowing H. pylori detection and clarithromycin susceptibility testing in either gastric biopsy or stool specimens. Objective: The aim of this study was to validate the novel biprobe real-time assay in stool specimens from 217 dyspeptic children. Methods: DNA from gastric biopsies and stool specimens were obtained and submitted to the biprobe real time assay for H. pylori detection and clarithromycin susceptibility testing. Results: The sensitivity, specificity, and test accuracy were 69, 100 and 93.9% for the detection of H. pylori infection and 83.3, 100 and 95.6%, for detection of clarithromycin resistance. Conclusion: This assay proved to be appropriate for H. pylori clarithromycin susceptibility testing, particularly in children populations where a high prevalence of clarithromycin-resistant strains is suspected.
Resumo:
A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described, Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log, drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 muM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and > 200 muM. MICs (1 day) of 12.5 to 25 muM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 muM for metronidazole-sensitive isolates to 50 muM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.
Resumo:
Based on the difficulties experienced in the treatment of chromoblastomycosis, 12 primary human isolates of F. pedrosoi, were tested for their in vitro susceptibility to various antimycotics. We adapted the recommendations of the NCCLS for yeasts and followed the indications for mold testing from other authors in order to determine their MICs and the MLCs. It was found that a significant proportion of the isolates were resistant to 3 of the 4 antimycotics tested, as revealed by high MIC values, as follows: 33% were resistant to amphotericin B (AMB), 58.3% to 5 fluocytosine (5 FC) and 66.7% to fluconazole (FLU). Contrarywise, none of the isolates proved resistant to itraconazole (ITZ). Determination of the MLCs revealed that a larger proportion of the isolates were not killed by AMB, 5 FC (91.7%), FLU (100%) or even, ITZ (41.7%). These data indicate that it would be desirable to determine the susceptibility of F. pedrosoi before initiating therapy, in order to choose the more effective antifungal and avoid clinical failure
Resumo:
A comparison of the Etest and the reference broth macrodilution susceptibility test for fluconazole, ketoconazole, itraconazole and amphotericin B was performed with 59 of Candida species isolated from the oral cavities of AIDS patients. The Etest method was performed according to the manufacturer's instructions, and the reference method was performed according to National Committee for Clinical Laboratory Standards document M27-A guidelines. Our data showed that there was a good correlation between the MICs obtained by the Etest and broth dilution methods. When only the MIC results at ± 2 dilutions for both methods were considered, the agreement rates were 90.4% for itraconazole, ketoconazole and amphotericin B and 84.6% for fluconazole of the C. albicans tested. In contrast, to the reference method, the Etest method classified as susceptible three fluconazole-resistant isolates and one itraconazole-resistant isolate, representing four very major errors. These results indicate that Etest could be considered useful for antifungal sensitivity evaluation of yeasts in clinical laboratories.
Resumo:
The antifungal activities of itraconazole, ketoconazole, fluconazole, terbinafine and griseofulvin were tested by broth microdilution methods against 71 isolates of dermatophytes isolated from Nigerian children. Most drugs were very active against all the dermatophytes and the MIC 90 ranged from 0.03 to 8.0 µg/mL. This appears to be the first documented data on the antifungal susceptibility testing of isolates of dermatophytes from Nigerian children.
Resumo:
Thirty Candida albicans isolated from oral candidosis patients and 30 C. albicans isolated from control individuals were studied. In vitro susceptibility tests were performed for amphotericin B, fluconazole, 5-flucytosine and itraconazole through the Clinical and Laboratorial Standards Institute (CLSI) reference method and E test system. The results obtained were analyzed and compared. MIC values were similar for the strains isolated from oral candidosis patients and control individuals. The agreement rate for the two methods was 66.67% for amphotericin B, 53.33% for fluconazole, 65% for flucytosine and 45% for itraconazole. According to our data, E test method could be an alternative to trial routine susceptibility testing due to its simplicity. However, it can not be considered a substitute for the CLSI reference method.
Resumo:
The antifungal activities of fluconazole, itraconazole, ketoconazole, terbinafine and griseofulvin were tested by broth microdilution technique, against 60 dermatophytes isolated from nail or skin specimens from Goiania city patients, Brazil. In this study, the microtiter plates were incubated at 28 ºC allowing a reading of the minimal inhibitory concentration (MIC) after four days of incubation for Trichophyton mentagrophytes and five days for T. rubrum and Microsporum canis. Most of the dermatophytes had uniform patterns of susceptibility to the antifungal agents tested. Low MIC values as 0.03 µg/mL were found for 33.3%, 31.6% and 15% of isolates for itraconazole, ketoconazole and terbinafine, respectively.
Resumo:
Trichosporon spp. are yeasts capable of causing invasive disease, which mainly affect immunocompromised patients. A clinical strain of T. asahii was isolated from the blood cultures of patients admitted to the General Hospital of Fortaleza. Susceptibility tests were conducted by disk diffusion and broth microdilution. The isolated strain of T. asahii was resistant to fluconazole. The patient used amphotericin B and caspofungin in order to facilitate the microbiological cure. It was the first isolation and identification of T. asahii in blood culture in Ceará, Brazil.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) are now a worldwide problem. Cystic fibrosis (CF) patients are commonly colonized and infected by MRSA. Accurate oxacillin susceptibility testing is mandatory for the adequate management of these patients. We performed a comparison of the accuracy of different tests in CF isolates, including methicillin-susceptible S. aureus and MRSA with different SCCmec types, and using the mecA gene as the gold-standard. The sensitivity and specificity of oxacillin disc, Etest, and oxacillin agar screening plate were 100%. Sensitivity of the cefoxitin disc was 85% and specificity was 100%. For clinically relevant isolates, laboratories may consider the use of a combination of two phenotypic methods.
Resumo:
INTRODUCTION: Antifungal susceptibility testing assists in finding the appropriate treatment for fungal infections, which are increasingly common. However, such testing is not very widespread. There are several existing methods, and the correlation between such methods was evaluated in this study. METHODS: The susceptibility to fluconazole of 35 strains of Candida sp. isolated from blood cultures was evaluated by the following methods: microdilution, Etest, and disk diffusion. RESULTS: The correlation between the methods was around 90%. CONCLUSIONS: The disk diffusion test exhibited a good correlation and can be used in laboratory routines to detect strains of Candida sp. that are resistant to fluconazole.
Resumo:
Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.
Resumo:
The antibiotic susceptibilities of Neisseria gonorrhoeae isolates obtained from patients attending a clinic for sexually transmitted diseases in Tucumán, Argentina, were determined by the agar dilution method (MIC). 3.5% of the isolates produced ²-lactamase. A total of 96.5% of ²-lactamase negative isolates tested were susceptible to penicillin (MIC < 2 µgml-1); 14.03% of the tested isolates were resistant to tetracycline (MIC < 2 µgml-1), and 98% of the tested isolates were susceptible to spectinomycin (MIC < 64 µgml-1). The MICs for 95% of the isolates, tested for other drugs were: < 2 µgml-1 for cefoxitin, < 0.06 µgml-1 for cefotaxime, < 0.25 µgml-1 for norfloxacin, < 10 µgml-1 for cephaloridine, < 10 µgml-1 for cephalexin, and < 50 µgml-1 for kanamycin. Antibiotic resistance among N. gonorrhoeae isolates from Tucumán, Argentina, appeared to be primarily limited to penicillin and tetracycline, which has been a general use against gonorrhoeae in Tucumán since 1960. Periodic monitoring of the underlying susceptibility profiles of the N. gonorrhoeae strains prevalent in areas of frequent transmission may provide clues regarding treatment options and emerging of drug resistance.
Resumo:
From March 1996 to August 1997, a study was carried out in a malaria endemic area of the Brazilian Amazon region. In vivo sensitivity evaluation to antimalarial drugs was performed in 129 patients. Blood samples (0.5 ml) were drawn from each patient and cryopreserved to proceed to in vitro studies. In vitro sensitivity evaluation performed using a radioisotope method was carried out with the cryopreserved samples from September to December 1997. Thirty-one samples were tested for chloroquine, mefloquine, halofantrine, quinine, arteether and atovaquone. Resistance was evidenced in 96.6% (29/30) of the samples tested for chloroquine, 3.3% (1/30) for quinine, none (0/30) for mefloquine and none for halofantrine (0/30). Overall low sensitivity was evidenced in 10% of the samples tested for quinine, 22.5% tested for halofantrine and in 20% tested for mefloquine. Means of IC 50 values were 132.2 (SD: 46.5) ng/ml for chloroquine, 130.6 (SD: 49.6) ng/ml for quinine, 3.4 (SD: 1.3) ng/ml for mefloquine, 0.7 (SD: 0.3) ng/ml for halofantrine, 1 (SD: 0.6) ng/ml for arteether and 0.4 (SD: 0.2) ng/ml for atovaquone. Means of chloroquine IC 50 of the tested samples were comparable to that of the chloroquine-resistant strain W2 (137.57 ng/ml) and nearly nine times higher than that of the chloroquine-sensitive strain D6 (15.09 ng/ml). Means of quinine IC 50 of the tested samples were 1.7 times higher than that of the low sensitivity strain W2 (74.84 ng/ml) and nearly five times higher than that of the quinine-sensitive strain D6 (27.53 ng/ml). These results disclose in vitro high resistance levels to chloroquine, low sensitivity to quinine and evidence of decreasing sensitivity to mefloquine and halofantrine in the area under evaluation.
Resumo:
The aim of this study was to investigate the correlation between proportion method with mycobacteria growth indicator tube (MGIT) and E-test for Mycobacterium tuberculosis. Forty clinical isolates were tested. MGIT and E-test with the first line antituberculous drugs correlated with the proportion method. Our results suggested that MGIT and E-test methods can be routinely used instead of the proportion method.
Resumo:
In order to evaluate the Organon Teknika MB/BacT system used for testing indirect susceptibility to the alternative drugs ofloxacin (OFLO), amikacin (AMI), and rifabutin (RIF), and to the usual drugs of standard treatment regimes such as rifampin (RMP), isoniazid (INH), pyrazinamide (PZA), streptomycin (SM), ethambutol (EMB), and ethionamide (ETH), cultures of clinical specimens from 117 patients with pulmonary tuberculosis under multidrug-resistant investigation, admitted sequentially for examination from 2001 to 2002, were studied. Fifty of the Mycobacterium tuberculosis cultures were inoculated into the gold-standard BACTEC 460 TB (Becton Dickinson) for studying resistance to AMI, RIF, and OFLO, and the remaining 67 were inoculated into Lowenstein Jensen (LJ) medium (the gold standard currently used in Brazil) for studying resistance to RMP, INH, PZA, SM, EMB, and ETH. We observed 100% sensitivity for AMI (80.8-100), RIF (80.8-100), and OFLO (78.1-100); and 100% specificity for AMI (85.4-100), RIF (85.4-100), and OFLO (86.7-100) compared to the BACTEC system. Comparing the results obtained in LJ we observed 100% sensitivity for RMP (80-100), followed by INH - 95% (81.8-99.1), EMB - 94.7% (71.9-99.7), and 100% specificity for all drugs tested except for PZA - 98.3 (89.5-99.9) at 95% confidence interval. The results showed a high level of accuracy and demonstrated that the fully automated, non-radiometric MB/BacT system is indicated for routine use in susceptibility testing in public health laboratories.