996 resultados para Surface nucleation
Resumo:
Based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, we propose two new models to describe the crystallisation kinetics of glass particles and use them to determine the density of nucleation sites, N(s), on glass powders. We tested these models with sintered compacts of diopside glass particles using sinter-crystallisation treatments at 825 degrees C (T(g)similar to 727 degrees C), that covered from null to almost 100% crystallised volume time fraction. We measured and compared the evolution of the crystallised volume fractions by optical microscopy and x-ray diffraction. Then we fit our expressions to experimental data using Ns and R (the average particle radius) as adjustable parameters. For comparison, we also fit to our data existing expressions that describe the crystallised volume fraction in glass powders. We demonstrate that all the methods allow one to estimate N(s) with reasonable accuracy. For our ground and water washed diopside glass powder, N(s) is between 10(10)-10(11) sites.m(-2). The reasonable agreement between experimental and adjusted R confirms the consistency of all five models tested. However, one of our equations does not require taking into account the change of crystallisation mode from 3-dimensional to 1-dimensional, and this is advantageous.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystal nucleation rates of a metastable phase (chi) on the surface of a near stoichiometric cordierite glass were determined for temperatures between 839 and 910 degrees C (T-g similar to 800 degrees C). The surface nucleation kinetics of that phase on our glass, as well as on a stoichiometric glass (2 MgO-2Al(2)O(3)-5SiO(2)) studied by other authors, were analysed in terms of the classical nucleation theory; for the first time. It was shown that the effective interfacial energy for surface nucleation is substantially lower than that for homogeneous volume nucleation in silicate glasses, vindicating the assumption of heterogeneous nucleation on free glass surfaces. The average wetting angle between the nucleating crystals and the active solid particles was estimated to be around 46 degrees C. The pre-exponential constant was several orders of magnitude higher than the theoretical values as found for volume homogeneous nucleation in oxide glasses.
Resumo:
Fatigue crack initiation occurs at the surface, although sub surface nucleation has also been reported. Localized imperfections like inclusions close to surface and surface small pits can result in crack sources. Coatings are not always beneficial by fatigue point of view too. Mechanical properties of the covering material can change considerably the fatigue behavior of base metal due to residual surface stresses, to micro cracks or to hydrogen embrittlement. This paper is concerned with analysis of electrolytic etch on the fatigue resistance of a 35NCD16 high strength steel in a mechanical condition of (1760 - 1960) MPa, and analysis of electroplated hard chromium effects on the fatigue resistance in a strength condition of 989 MPa. Hardness impression was used as a reference parameter in case of electrolytic etch. In both cases, experimental data showed that fatigue strength of 35NCD16 steel was considerably reduced. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.
Resumo:
Photodeposition of H2PtCl6 in the presence of methanol promotes the formation of highly dispersed, metallic Pt nanoparticles over titania, likely via capture of photogenerated holes by the alcohol to produce an excess of surface electrons for substrate-mediated transfer to Pt complexes, resulting in a high density of surface nucleation sites for Pt reduction. Photocatalytic hydrogen production from water is proportional to the surface density of Pt metal co-catalyst, and hence photodeposition in the presence of high methanol concentrations affords a facile route to optimising photocatalyst design and highlights the importance of tuning co-catalyst properties in photocatalysis.
Resumo:
The adsorption of water on a model hexagonal surface has been studied using accurate intermolecular potentials. The structure and binding energies of single molecules, clusters, and adlayers are obtained. The limiting case of weak, nondirectional surface-water interactions presented here is compared with other cases involving water-water and water-surface interactions of a similar magnitude (partial templating) and dominating water-surface interactions (perfect templating) from the literature. None of these models is conducive to the nucleation of ice, each for different reasons.Wecommenton the requirements for a good ice-nucleating surface.
Resumo:
A novel nucleation apparatus is presented for the production of narrow sized nuclei from various powder and binder liquid combinations. Mono-sized binder liquid droplets are produced by a specially designed mono-disperse droplet generator. The droplet generator is positioned above a conveyor belt, transporting a powder bed through the spray zone of the droplet generator. By nucleating powder on a conveyer belt, the nucleation mechanism is completely separated from all other granulation mechanisms due to the lack of relative motion between primary particles and/or formed nuclei. Nucleation tests were performed using chalcopyrite and limestone powders with water as the binder liquid. At all operating conditions, the formed nuclei were found to originate from multiplicities of drops that merged on the powder bed surface. Investigation of the dynamics of nuclei formation showed that powder-binder liquid combinations with fast penetration dynamics result in less variation in the number of droplets from which nuclei originate. Smaller and more narrowly distributed nuclei were also achieved by increasing powder speed through the spray zone.
Resumo:
A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
We characterize the elastic contribution to the surface free energy of a nematic liquid crystal in the presence of a sawtooth substrate. Our findings are based on numerical minimization of the Landau-de Gennes model and analytical calculations on the Frank-Oseen theory. The nucleation of disclination lines (characterized by non-half-integer winding numbers) in the wedges and apexes of the substrate induces a leading order proportional to q ln q to the elastic contribution to the surface free-energy density, with q being the wave number associated with the substrate periodicity.
Resumo:
A detailed in situ spectroellipsometric analysis of the nucleation and growth of hydrogenated amorphous silicon (a:Si:H) is presented. Photoelectronic quality a‐Si:H films are deposited by plasma‐enhanced chemical vapor deposition on smooth metal (NiCr alloy) and crystalline silicon (c‐Si) substrates. The deposition of a‐Si:H is analyzed from the first monolayer up to a final thickness of 1.2 μm. In order to perform an improved analysis, real time ellipsometric trajectories are recorded, using fixed preparation conditions, at various photon energies ranging from 2.2 to 3.6 eV. The advantage of using such a spectroscopic experimental procedure is underlined. New insights into the nucleation and growth mechanisms of a‐Si:H are obtained. The nucleation mechanism on metal and c‐Si substrates is very accurately described assuming a columnar microstructural development during the early stage of the growth. Then, as a consequence of the incomplete coalescence of the initial nuclei, a surface roughness at the 10-15 Å scale is identified during the further growth of a‐Si:H on both substrates. The bulk a‐Si:H grows homogeneously beneath the surface roughness. Finally, an increase of the surface roughness is evidenced during the long term growth of a‐Si:H. However, the nature of the substrate influenced the film growth. In particular, the film thickness involved in the nucleation‐coalescence phase is found lower in the case of c‐Si (67±8 Å) as compared to NiCr (118±22 Å). Likewise films deposited on c‐Si present a smaller surface roughness even if thick samples are considered (>1 μm). More generally, the present study illustrates the capability of in situ spectroellipsometry to precisely analyze fundamental processes in thin‐film growth, but also to monitor the preparation of complex structures on a few monolayers scale.
Resumo:
The use of high-melting fibres as linear nuclei for quiescent polymeric melts is instrumental in providing the superior mechanical properties of polymeric self-composites. It also has inherent advantages in the elucidation of fundamental aspects of polymeric crystallization and self-organization, not least in allowing systematic microscopic studies of polymeric crystallization from nucleation through to the growth interface. This has demonstrated explicitly that lamellae develop in two distinct ways, for slower and faster growth, depending on whether fold packing has or has not time to order before the next molecular layer is added with only the former leading to banded growth in linear polyethylene. Other gains in understanding concern cellulation and morphological instability, internuclear interference, isothermal lamellar thickening and banded growth being a consequence of the partial relief of initial surface stress. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca2+-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca2+-independent membrane damage by Lys49-PLA(2)s. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Nucleation and growth of mullite whiskers in the La2O3-Al2O3-SiO2 system were investigated in the 1500degrees-1700degreesC temperature range. A differential thermal analysis (DTA) showed that the mullitization temperature decreases from 1350degreesC to 1240degreesC as a result of lanthania doping. In the temperature range of 1250-1500degreesC, most of the mullite grains have an Al2O3/SiO2 = 1.5 composition throughout the ceramic body; however, from 1400degreesC upward, the number of anisotropic grains with the Al2O3/SiO2 = 1.3 composition begins to increase. The concentration of alumina in the composition of the grain-boundary phase decreases as firing temperatures increase. At temperatures > 1500degreesC, alumina grains and whiskers grow on the internal and external surfaces of the ceramic body with the characteristic Al2O3/SiO2 = 1.3 composition. Removal of the mullite whisker layer by acid attack revealed an alumina-rich, rosace-like patterned microstructure correlated with the process of whisker nucleation and growth. In the early stages, whisker growth rates were found to be near 60 mum/h. Experimental evidence pointed to nucleation inside the thin glass layer on the external surface.