1000 resultados para Surface hydrology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the case of urban centres of the developing countries, corrective measures for the environmental consequences of spontaneous or wrongly planned developments are often prohibitively costly. Hence environmentally planned development alone appears to be the solution for which, a compre-hensive assessment of all the resources is an essential pre—requisite. An under-standing of the prevailing environmental conditions is essential for the effective management and execution of programmes for sustainable development. The present work is a modest attempt at assessing the environmental resources of Cochin, the industrial and business capital of Kerala and a fast developing metropolis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The canopy interception capacity is a small but key part of the surface hydrology, which affects the amount of water intercepted by vegetation and therefore the partitioning of evaporation and transpiration. However, little research with climate models has been done to understand the effects of a range of possible canopy interception capacity parameter values. This is in part due to the assumption that it does not significantly affect climate. Near global evapotranspiration products now make evaluation of canopy interception capacity parameterisations possible. We use a range of canopy water interception capacity values from the literature to investigate the effect on climate within the climate model HadCM3. We find that the global mean temperature is affected by up to -0.64 K globally and -1.9 K regionally. These temperature impacts are predominantly due to changes in the evaporative fraction and top of atmosphere albedo. In the tropics, the variations in evapotranspiration affect precipitation, significantly enhancing rainfall. Comparing the model output to measurements, we find that the default canopy interception capacity parameterisation overestimates canopy interception loss (i.e. canopy evaporation) and underestimates transpiration. Overall, decreasing canopy interception capacity improves the evapotranspiration partitioning in HadCM3, though the measurement literature more strongly supports an increase. The high sensitivity of climate to the parameterisation of canopy interception capacity is partially due to the high number of light rain-days in the climate model that means that interception is overestimated. This work highlights the hitherto underestimated importance of canopy interception capacity in climate model hydroclimatology and the need to acknowledge the role of precipitation representation limitations in determining parameterisations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere through changes in OH, O$_3$, NO$_x$ concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyzes the hydrological processes and the impact of soil properties and land use on these processes in tropical headwater catchment in the sub-humid part of Benin (West-Africa), the Aguima catchment. The presented study is integrated in the GLOWA IMPETUS project, which investigates the effects of global change on the water cycle and water availability on a regional scale in Morocco and Benin. The lack of field investigations concerning soil and surface hydrology in the Benin research area necessitates detailed field measurements including measurements of discharge, soil water dynamics, soil physical properties etc. on the local scale in order to understand the dominant runoff generation processes and its influencing factors. This is a pre-requisite to be able to forecast the effects which global change has on hydrological processes and water availability in the region. The paper gives an overview over the hydrologic measuring concept of the IMPETUS-Benin project focusing on measurements concerning the soil saturated conductivity ksat and discharge behaviour of two different sub-catchment of the Aguima catchment. The results of ksat measurements revealed that interflow is the dominant runoff process on the hillslopes of the investigated catchment. Concerning the impact of land use on the hydrological processes infiltration experiments showed that infiltration rates were reduced on cultivated land compared to natural land cover. This results in significant differences in runoff behaviour and runoff ratios while comparing natural and agricultural used catchments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.