995 resultados para Surface coil
Resumo:
Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume can be ascribed to the brain. The use of surface coil as transceiver increases Signal-to-Noise Ratio (SNR), reduces radiofrequency power requirements and opens the possibility of parallel transmit schemes, likely to allow efficient acquisition schemes, of critical importance for reducing the long scan times implicated in diffusion tensor imaging. This study demonstrates the implementation of a semiadiabatic echo planar imaging sequence (echo time=40 ms, four interleaves) at 14.1T using a quadrature surface coil as transceiver. It resulted in artifact free images with excellent SNR throughout the brain. Diffusion tensor derived parameters obtained within the rat brain were in excellent agreement with reported values.
Resumo:
Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.
Resumo:
Purpose Carbon-13 magnetic resonance spectroscopy (13C-MRS) is challenging because of the inherent low sensitivity of 13C detection and the need for radiofrequency transmission at the 1H frequency while receiving the 13C signal, the latter requiring electrical decoupling of the 13C and 1H radiofrequency channels. In this study, we added traps to the 13C coil to construct a quadrature-13C/quadrature-1H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Methods Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-13C coil was assessed using in vitro 23Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by 13C-MRS in vitro, compared with that obtained with a linear-13C/quadrature-1H coil, and validated by 13C-MRS in vivo in the human calf at 7T. Results Isolation between channels was better than â^'30 dB. The 23Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. Conclusion It is feasible to construct a double-quadrature 13C-1H surface coil for proton decoupled sensitivity enhanced 13C-NMR spectroscopy in humans at 7T. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.
Resumo:
Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.
Resumo:
PURPOSE: To objectively compare quantitative parameters related to image quality attained at coronary magnetic resonance (MR) angiography of the right coronary artery (RCA) performed at 7 T and 3 T. MATERIALS AND METHODS: Institutional review board approval was obtained, and volunteers provided signed informed consent. Ten healthy adult volunteers (mean age ± standard deviation, 25 years ± 4; seven men, three women) underwent navigator-gated three-dimensional MR angiography of the RCA at 7 T and 3 T. For 7 T, a custom-built quadrature radiofrequency transmit-receive surface coil was used. At 3 T, a commercial body radiofrequency transmit coil and a cardiac coil array for signal reception were used. Segmented k-space gradient-echo imaging with spectrally selective adiabatic fat suppression was performed, and imaging parameters were similar at both field strengths. Contrast-to-noise ratio between blood and epicardial fat; signal-to-noise ratio of the blood pool; RCA vessel sharpness, diameter, and length; and navigator efficiency were quantified at both field strengths and compared by using a Mann-Whitney U test. RESULTS: The contrast-to-noise ratio between blood and epicardial fat was significantly improved at 7 T when compared with that at 3 T (87 ± 34 versus 52 ± 13; P = .01). Signal-to-noise ratio of the blood pool was increased at 7 T (109 ± 47 versus 67 ± 19; P = .02). Vessel sharpness obtained at 7 T was also higher (58% ± 9 versus 50% ± 5; P = .04). At the same time, RCA vessel diameter and length and navigator efficiency showed no significant field strength-dependent difference. CONCLUSION: In our quantitative and qualitative study comparing in vivo human imaging of the RCA at 7 T and 3 T in young healthy volunteers, parameters related to image quality attained at 7 T equal or surpass those from 3 T.
Resumo:
Background: Glutathione (GSH) is a major redox regulator and antioxidant and is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients [Do et al. (2000) Eur J Neurosci 12:3721]. The genes of the key GSH-synthesizing enzyme, glutamate- cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, are associated with schizophrenia, suggesting that the deficit in GSH synthesis is of genetic origin [Gysin et al. (2007) PNAS 104:16621]. GCLM knock-out (KO) mice, which display an 80% decrease in brain GSH levels, have abnormal brain morphology and function [Do et al. (2009) Curr Opin Neurobiol 19:220]. Developmental redox deregulation by impaired GSH synthesis and environmental risk factors generating oxidative stress may have a central role in schizophrenia. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. Methods: The neurochemical profile of the anterior and posterior cortical areas of male and female GCLM KO and wild-type mice was determined by in vivo 1H NMR spectroscopy on postnatal days 10, 20, 30, 60 and 90, under 1 to 1.5% isoflurane anaesthesia. Localised 1H NMR spectroscopy was performed on a 14.1 T, 26 cm VNMRS spectrometer (Varian, Magnex) using a home-built 8 mm diameter quadrature surface coil (used both for RF excitation and signal reception). Spectra were acquired using SPECIAL with TE of 2.8 ms and TR of 4 s from VOIs placed in anterior or posterior regions of the cortex [Mlynárik et al. (2006) MRM 56:965]. LCModel analysis allowed in vivo quantification of a neurochemical profile composed of 18 metabolites. Results: GCLM KO mice displayed nearly undetectable GSH levels as compared to WT mice, demonstrating their drastic redox deregulation. Depletion of GSH triggered alteration of metabolites related to its synthesis, namely increase of glycine and glutamate levels during development (P20 and P30). Concentrations of glutamine and aspartate that are produced from glutamate were also increased in GCLM KO animals relative to WT. In addition, GCLM KO mice also showed higher levels of N-acetylaspartate that originates from the acetylation of aspartate. These metabolites are particularly implicated in neurotransmission processes and in mitochondrial oxidative metabolism. Their increase may indicate impaired mitochondrial metabolism with concomitant accumulation of lactate in the adult mice (P60 and P90). In addition, the GSH depletion triggers reduction of GABA concentration in anterior cortex of the P60 mice, which is in accordance with known impairment of GABAergic interneurons in that area. Changes were generally more pronounced in males than in females at P60, which is consistent with earlier disease onset in male patients. Discussion: In conclusion, the observed metabolic alterations in the cortex of a mouse model of redox deregulation suggest impaired mitochondrial metabolism and altered neurotransmission. The results also highlight the age between P20 and P30 as a sensitive period during the development for these alterations.
Resumo:
In this paper the problem of intensity inhomogeneity athigh magnetic field on magnetic resonance images isaddressed. Specifically, rat brain images at 9.4Tacquired with a surface coil are bias corrected. Wepropose a low- pass frequency model that takes intoaccount not only background-object contours but alsoother important contours inside the image. Twopre-processing filters are proposed: first, to create avolume of interest without contours, and second, toextrapolate the image values of such masked area to thewhole image. Results are assessed quantitatively andvisually in comparison to standard low pass filterapproach, and they show as expected better accuracy inenhancing image intensity.
Resumo:
Le présent mémoire porte sur la conception et le développement de deux antennes RF utilisées en imagerie par résonance magnétique. Ces antennes ont pour but de guider le futur développement d’une plateforme d’imagerie multi-animal qui servira les chercheurs du nouveau CRCHUM. Plus spécifiquement, ces antennes ont été conçues pour l’imagerie du proton à 1.5T. La première utilise une birdcage de type lowpass pour la partie émettrice et utilise 8 éléments de surface pour la partie réceptrice. La seconde antenne est une birdcage de type lowpass polarisée circulairement qui est utilisée à la fois pour l’émission et pour la réception. Cette dernière a présenté de bonnes performances, générant des images avec un SNR élevé et avec une bonne homogénéité, la rendant une bonne candidate pour la future plateforme. La première a présenté quelques problèmes au niveau de la désyntonisation de la birdcage et du couplage entre les éléments. Dans le cas où ces problèmes venaient à être surmontés, cette antenne aurait l’avantage de pouvoir utiliser des techniques d’imagerie parallèle et possiblement d’avoir un SNR plus élevé.
Resumo:
Entailing of phosphorus exchanges in most bio-chemicals as a key factor in disease, increases researcher’s interest to develop the technologies capable of detecting this metabolite. Phosphorus magnetic resonance spectroscopy is able to detect key metabolites in a non-invasive manner. Particularly, it offers the ability to measure the dynamic rate of phosphocreatine(PCr) degeneration through the exercise and recovery. This metric as a valid indication of mitochondrial oxidative metabolism in muscle, differentiate between normal and pathological state. To do magnetic resonance imaging and spectroscopy, clinical research tools provide a wide variety of anatomical and functional contrasts, however they are typically restricted to the tissues containing water or hydrogen atoms and they are still blind to the biochemicals of other atoms of interests. Through this project we intended to obtain the phosphorus spectrum in human body – specificadenerativelly in muscle – using 31P spectroscopy. To do so a double loop RF surface coil, tuned to phosphorus frequency, is designed and fabricated using bench work facilities and then validated through in vitro spectroscopy using 3 Tesla Siemens scanner. We acquired in vitro as well as in vivo phosphorus spectrum in a 100 mM potassium phosphate phantom and human calf muscle in rest-exercise-recovery phase in a 3T MR scanner. The spectrum demonstrates the main constituent in high-energy phosphate metabolism. We also observed the dynamic variation of PCr for five young healthy subjects who performed planter flexions using resistance band during exercise and recovery. The took steps in this project pave the way for future application of spectroscopic quantification of phosphate metabolism in patients affected by carotid artery disease as well as in age-matched control subjects.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A computational pipeline combining texture analysis and pattern classification algorithms was developed for investigating associations between high-resolution MRI features and histological data. This methodology was tested in the study of dentate gyrus images of sclerotic hippocampi resected from refractory epilepsy patients. Images were acquired using a simple surface coil in a 3.0T MRI scanner. All specimens were subsequently submitted to histological semiquantitative evaluation. The computational pipeline was applied for classifying pixels according to: a) dentate gyrus histological parameters and b) patients' febrile or afebrile initial precipitating insult history. The pipeline results for febrile and afebrile patients achieved 70% classification accuracy, with 78% sensitivity and 80% specificity [area under the reader observer characteristics (ROC) curve: 0.89]. The analysis of the histological data alone was not sufficient to achieve significant power to separate febrile and afebrile groups. Interesting enough, the results from our approach did not show significant correlation with histological parameters (which per se were not enough to classify patient groups). These results showed the potential of adding computational texture analysis together with classification methods for detecting subtle MRI signal differences, a method sufficient to provide good clinical classification. A wide range of applications of this pipeline can also be used in other areas of medical imaging. Magn Reson Med, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.
Resumo:
Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side". A bioinformatics analysis provides an extended list of known and putative proteins from different species of Plasmodium which have such MSP3-like C-terminal domains. This finding allowed us to extend some conclusions of our studies to a larger group of the malaria surface proteins. Possible structural and functional roles of these highly conserved oligomerization domains in the intact merozoite surface proteins are discussed.