948 resultados para Suprascapular nerve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work 3 new cases of suprascapular nerve mononeuropathy are described. ENMG diagnosis criteria were: a) normal sensory conduction studies of the ipsolateral ulnar, median and radial nerves; b) bilateral suprascapular nerve latencies with bilateral compound muscle action potential, obtained from the infraspinatus muscle with symmetrical techniques; and c) abnormal neurogenic infraspinatus muscle electromyographic findings, coexisting with normal electromyographical data of the ipsolateral deltoideus and supraspinatus muscles. These 3 cases of suprascapular mononeurpathy were found in 6,080 ENMG exams from our University Hospital. For us this mononeuropathy is rare with a 0.05% occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The suprascapular nerve (SSN) block is frequently performed for different shoulder pain conditions and for perioperative and postoperative pain control after shoulder surgery. Blind and image-guided techniques have been described, all of which target the nerve within the supraspinous fossa or at the suprascapular notch. This classic target point is not always ideal when ultrasound (US) is used because it is located deep under the muscles, and hence the nerve is not always visible. Blocking the nerve in the supraclavicular region, where it passes underneath the omohyoid muscle, could be an attractive alternative.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the morphological organization of the deer brachial plexus in order to supply data to veterinary neuroclinics and anaesthesiology. The deer (Mazama gouazoubira) brachial plexus is composed of four roots: three cervical (C6, C7 and C8) and one thoracic (T1). Within each sex group, no variations are observed between the left and the right brachial plexus, though sex-related differences are seen especially in its origin. The origin of axillary and radial nerves was: C6, C7, C8 and T1 in males and C8-T1 (radial nerve) and C7, C8 and T1 (axillary nerve) in females; musculocutaneous nerve was: C6-C7 (males) and C8-T1 (females); median and ulnar nerves was: C8-T1 (males) and T1 (females); long thoracic nerve was: C7 (males) and T1 (females); lateral thoracic nerve was: C6, C7, C8 and T1 (males) and T1 (females); thoracodorsal nerve was: C6, C7, C8 and T1 (males) and C8-T1 (females); suprascapular nerve was: C6-C7 (males) and C6 (females) and subscapular nerve was: C6-C7 (males) and C7 (females). This study suggests that in male deer the origin of the brachial plexus is more cranial than in females and the origin of the brachial plexus is slightly more complex in males, i.e. there is an additional number of roots (from one to three). This sexual dimorphism may be related to specific biomechanical functions of the thoracic limb and electrophysiological studies may be needed to shed light on this morphological feature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cerdocyon thous is a canid that has a wide distribution in South America and, besides some general aspects, its morphology is little known in the literature, especially regarding the nervous system. With the aim of elucidating the anatomical composition of brachial plexus, we studied three male specimens from Paragominas-PA, donated to the Morphological Laboratory of Animal Research (LaPMA), Federal Rural University of Amazonia (UFRA), after death by trampling. The animals were fixed in an aqueous solution of 10% formaldehyde for bilateral dissection of the origin of the brachial plexus. The brachial plexus of C. thous is derived from the last three cervical nerves and the first thoracic nerve (C6-T1). The main nerves that compose it, with their respective origins were the suprascapular nerve, subscapular nerve and musculocutaneous nerve (C6-C7), axillary nerve (C7-C8), radial nerve (C7-T1 and C7-C8), median nerve, ulnar nerve, thoracodorsal and thoracic lateral nerve (C8-T1). We conclude that the brachial plexus of C. thous is similar to that described for the domestic dogs, showing small differences in the composition of some nerves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shoulder arthroscopic surgeries evolve with intense postoperative pain. Several analgesic techniques have been advocated. The aim of this study was to compare suprascapular and axillary nerve blocks in shoulder arthroscopy using the interscalene approach to brachial plexus blockade. According to the technique used, sixty-eight patients were allocated into two groups: interscalene group (IG, n=34) and selective group (SG, n=34), with neurostimulation approach used for both techniques. After appropriate motor response, IG received 30 mL of 0.33% levobupivacaine in 50% enantiomeric excess with adrenalin 1:200,000. After motor response of suprascapular and axillary nerves, SG received 15 mL of the same substance on each nerve. General anesthesia was then administered. Variables assessed were time to perform the blocks, analgesia, opioid consumption, motor block, cardiovascular stability, patient satisfaction and acceptability. Time for interscalene blockade was significantly shorter than for selective blockade. Analgesia was significantly higher in the immediate postoperative period in IG and in the late postoperative period in SG. Morphine consumption was significantly higher in the first hour in SG. Motor block was significantly lower in SG. There was no difference between groups regarding cardiocirculatory stability and patient satisfaction and acceptability. Failure occurred in IG (1) and SG (2). Both techniques are safe, effective, and with the same degree of satisfaction and acceptability. The selective blockade of both nerves showed satisfactory analgesia, with the advantage of providing motor block restricted to the shoulder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To analyze the repeatability of measuring nerve fiber length (NFL) from images of the human corneal subbasal nerve plexus using semiautomated software. Methods: Images were captured from the corneas of 50 subjects with type 2 diabetes mellitus who showed varying severity of neuropathy, using the Heidelberg Retina Tomograph 3 with Rostock Corneal Module. Semiautomated nerve analysis software was independently used by two observers to determine NFL from images of the subbasal nerve plexus. This procedure was undertaken on two occasions, 3 days apart. Results: The intraclass correlation coefficient values were 0.95 (95% confidence intervals: 0.92–0.97) for individual subjects and 0.95 (95% confidence intervals: 0.74–1.00) for observer. Bland-Altman plots of the NFL values indicated a reduced spread of data with lower NFL values. The overall spread of data was less for (a) the observer who was more experienced at analyzing nerve fiber images and (b) the second measurement occasion. Conclusions: Semiautomated measurement of NFL in the subbasal nerve fiber layer is highly repeatable. Repeatability can be enhanced by using more experienced observers. It may be possible to markedly improve repeatability when measuring this anatomic structure using fully automated image analysis software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim/hypothesis Immune mechanisms have been proposed to play a role in the development of diabetic neuropathy. We employed in vivo corneal confocal microscopy (CCM) to quantify the presence and density of Langerhans cells (LCs) in relation to the extent of corneal nerve damage in Bowman's layer of the cornea in diabetic patients. Methods 128 diabetic patients aged 58±1 yrs with a differing severity of neuropathy based on Neuropathy Deficit Score (NDS—4.7±0.28) and 26 control subjects aged 53±3 yrs were examined. Subjects underwent a full neurological evaluation, evaluation of corneal sensation with non-contact corneal aesthesiometry (NCCA) and corneal nerve morphology using corneal confocal microscopy (CCM). Results The proportion of individuals with LCs was significantly increased in diabetic patients (73.8%) compared to control subjects (46.1%), P=0.001. Furthermore, LC density (no/mm2) was significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58), P=0.001 and there was a significant correlation with age (r=0.162, P=0.047) and severity of neuropathy (r=−0.202, P=0.02). There was a progressive decrease in corneal sensation with increasing severity of neuropathy assessed using NDS in the diabetic patients (r=0.414, P=0.000). Corneal nerve fibre density (P<0.001), branch density (P<0.001) and length (P<0.001) were significantly decreased whilst tortuosity (P<0.01) was increased in diabetic patients with increasing severity of diabetic neuropathy. Conclusion Utilising in vivo corneal confocal microscopy we have demonstrated increased LCs in diabetic patients particularly in the earlier phases of corneal nerve damage suggestive of an immune mediated contribution to corneal nerve damage in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterisation and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression and assess new therapies. This thesis evaluates novel corneal methods of assessing diabetic neuropathy. Over the past several years two new non-invasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy (CCM) allows quantification of corneal nerve parameters and non-contact corneal aesthesiometry (NCCA), the presumed functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and with automatic analysis paradigms developed, are suitable for clinical settings. Each has advantages and disadvantages over established techniques for assessing diabetic neuropathy. New information is presented regarding measurement bias of CCM images, and a unique sampling paradigm and associated accuracy determination method of combinations is described. A novel high-speed corneal nerve mapping procedure has been developed and application of this procedure in individuals with neuropathy has revealed regions of sub-basal nerve plexus that dictate further evaluation, as they appear to show earlier signs of damage than the central region of the cornea that has to date been examined. The discriminative capacity of corneal sensitivity measured by NCCA is revealed to have reasonable potential as a marker of diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To develop a rapid optimized technique of wide-field imaging of the human corneal subbasal nerve plexus. A dynamic fixation target was developed and, coupled with semiautomated tiling software, a rapid method of capturing and montaging multiple corneal confocal microscopy images was created. To illustrate the utility of this technique, wide-field maps of the subbasal nerve plexus were produced in 2 participants with diabetes, 1 with and 1 without neuropathy. The technique produced montages of the central 3 mm of the subbasal corneal nerve plexus. The maps seem to show a general reduction in the number of nerve fibers and branches in the diabetic participant with neuropathy compared with the individual without neuropathy. This novel technique will allow more routine and widespread use of subbasal nerve plexus mapping in clinical and research situations. The significant reduction in the time to image the corneal subbasal nerve plexus should expedite studies of larger groups of diabetic patients and those with other conditions affecting nerve fibers. The inferior whorl and the surrounding areas may show the greatest loss of nerve fibers in individuals with diabetic neuropathy, but this should be further investigated in a larger cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Arbitrary numbers of corneal confocal microscopy images have been used for analysis of corneal subbasal nerve parameters under the implicit assumption that these are a representative sample of the central corneal nerve plexus. The purpose of this study is to present a technique for quantifying the number of random central corneal images required to achieve an acceptable level of accuracy in the measurement of corneal nerve fiber length and branch density. Methods Every possible combination of 2 to 16 images (where 16 was deemed the true mean) of the central corneal subbasal nerve plexus, not overlapping by more than 20%, were assessed for nerve fiber length and branch density in 20 subjects with type 2 diabetes and varying degrees of functional nerve deficit. Mean ratios were calculated to allow comparisons between and within subjects. Results In assessing nerve branch density, eight randomly chosen images not overlapping by more than 20% produced an average that was within 30% of the true mean 95% of the time. A similar sampling strategy of five images was 13% within the true mean 80% of the time for corneal nerve fiber length. Conclusions The “sample combination analysis” presented here can be used to determine the sample size required for a desired level of accuracy of quantification of corneal subbasal nerve parameters. This technique may have applications in other biological sampling studies.