889 resultados para Superoxide-dismutase
Resumo:
A potent superoxide dismutase mimic; Mn-II(HL)(2) [H(2)L = 2,6-bis(benzimidazol-2-yl)pyridine] has been synthesised and characterised by its crystal structure determination and EPR spectroscopy.
Resumo:
Superoxide dismutase has been discovered within the periplasm of several Gram-negative pathogens. We studied the Cu,Zn-SOD enzyme in Escherichia coli isolated from clinical samples (stool samples) collected from patients suffering from diarrhea. Antibiogram studies of the isolates were carried out to determine the sensitive and resistant strains. The metal co-factor present in the enzyme was confirmed by running samples in native gels and inhibiting with 2 mM potassium cyanide. A 519 bp sodC gene was amplified from resistant and sensitive strains of Escherichia coli. Cloning and sequencing of the sodC gene indicated variation in the protein and amino acid sequences of sensitive and resistant isolates. The presence of sodC in highly resistant Escherichia coli isolates from diarrheal patients indicates that sodC may play role in enhancing the pathogenicity by protecting cells from exogenous sources of superoxide, such as the oxidative burst of phagocytes. The presence of SodC could be one of the factors for bacterial virulence.
Resumo:
Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.
Resumo:
A limnological study was carried out to determine the responses of superoxide dismutase (SOD) activities and soluble protein (SP) contents of 11 common aquatic plants to eutrophication stress. Field investigation in 12 lakes in the middle and lower reaches of the Yangtze River was carried out from March to September 2004. Our results indicated that non-submersed (emergent and floating-leafed) plants and submersed plants showed different responses to eutrophication stress. Both SOD activities of the non-submersed and submersed plants were negatively correlated with their SP contents (P < 0.000 1). SP contents of non-submersed plants were significantly correlated with all nitrogen variables in the water (P < 0.05), whereas SP contents of submersed plants were only significantly correlated with carbon variables as well as ammonium and Secchi depth (SD) in water (P < 0.05). Only SOD activities of submersed plants were decreased with decline of SD in water (P < 0.001). Our results indicate that the decline of SOD activities of submersed plants were mainly caused by light limitation, this showed a coincidence with the decline of macrophytes in eutrophic lakes, which might imply that the antioxidant system of the submersed plants were impaired under eutrophication stress.
Resumo:
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasite Clonorchis sinensis have been cloned and their gene products functionally characterized. Genes Cu/ZnSOD and MnSOD encode proteins of 16 kDa and 25.4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73.7% and 75.4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ ZnSOD and MnSOD, both of which were functionally expressed in Escherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that both C. sinensis Cu/ZnSOD and MnSOD should be antigenic for humans, and both, especially the C. sinensis MnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in the C. sinensis antioxidant system.
Resumo:
Cypermethrin is a synthetic pyrethroid that is particularly toxic to crustaceans. It is therefore applied as a chemotherapeutant in farms for the treatment of pests. The effective concentrations of cypermethrin on the inhibition of Scenedesmus ohliquus growth at 96h (96h EC50) were determined to be 50, 100, 150, 200, and 250mg/L. Algal growth, pigment fractions, and the activity of superoxide dismutase (SOD) in the algal cells were measured in the exponential phase after exposure to cypermethrin. The results show that higher concentration of cypermethrin is inhibitory for growth and other metabolic activities and the 96h EC50 of cypermethrin to S. ohliquus is 112 +/- 9 mg/L; the potential application of SOD activity in S. ohliquus as a sensitive biomarker for cypermethrin exposure is also discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Microcystins are naturally occurring hepatotoxic cyclic heptapeptides produced by some toxic freshwater cyanobacterial species. In this study, crude extract of toxic cyanobacterial blooms from Dianchi Lake in southwestern China was used to determine the effects of microcystins on rape (Brassica napus L.) and rice (Oryza sativa L.). Experiments were carried out on a range of doses of the extract (equivalent to 0, 0.024, 0.12, 0.6 and 3 mug MC-LR/ml). Investigations showed that exposure to microcystins inhibited the growth and development of both rice and rape seedlings, however, microcystins had more powerful inhibition effect on rape than rice in germination percentage of seeds and seedling height. Microcystins significantly inhibited the elongation of primary roots of rape and rice seedlings. Determination of the activities of peroxidase and superoxide dismutase demonstrated that microcystin stress was manifested as an oxidative stress. Using ELISA, microcystins were examined from the extract of exposed rape and rice seedlings, indicating that consumption of edible plants exposed to microcystins via irrigation route may have health risks. Significantly different levels of recovered microcystins between exposed rice and rape seedlings Suggested that there might be different tolerant mechanisms toward microcystins. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Superoxide dismutase activity in water hyacinth leaves was not sensitive to small changes in environmental pH, but declined markedly with greater pH changes. KCN inhibited superoxide dismutase activity, suggesting that the enzyme was mainly composed of the Cu-Zn form. Low temperature (2-degrees-C) treatment caused a decline in superoxide dismutase activity. This effect became more pronounced as the treatment time was prolonged. Furthermore, the decline was much more significant than reductions of glucose-6-phosphate dehydrogenase activity or respiration under comparable conditions. With increasing physiological age, superoxide dismutase activity declined and was significantly lower in old than in young leaves. Therefore, superoxide dismutase activity might be employed as one of physiological parameters in studying leaf senescence.
Resumo:
The interactions of lanthanium trichloride and terbium trichloride with bovine blood Cu (Zn)-superoxide dismutase [Cu(Zn)-SOD] in the aqueous solution of hexamethylenetetrarnine buffer (pH = 6.3) have been studied by using fluorescece, CD and ESR spectra. The results indicated that rare earth ions were coordinated to the carboxyl groups of acidic amino acid residues which were far from active center of the Cu(Zn)-SOD molecule and only lightly disturbed the secondary structure of the enzyme protien, and made the coordination structure of enzyme-bound CU2+ come from the rhombchedron to the axial shape at 77 K and the activity of Cu(Zn)-SOD enzyme was not nearly changed at room temperature.
Resumo:
Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme had been isolated, purified and partially characterized from muscle tissue of the shrimp Macrobrachium nipponense. The purification was achieved by heat treatment, ammonium sulfate fractionated precipitation and column chromatograph on DEAE-cellulose 32. Some physiological and biochemical characterization of it was tested. The molecular weight of it was about 21.7 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had an absorption peak of 278 nm in ultraviolet region, and the enzyme remained stable at 25-45 degreesC within 90 min. However, it was rapidly inactivated at higher temperature. Treatment of the enzyme with 1 mM ZnCl2, SDS and 1 mM or 10 mM mercaptoethanol showed some increasing activity. However, the enzyme activity was obviously inhibited by 10 mM CaCl2, CuSO4, ZnCl2 and 1 mM CaCl2 and 10 mM K2Cr2O7. SOD activity did not show significantly variation after incubated with 1 mM CaCl2, EDTA and 10 MM SDS. The enzyme was insensitive to cyanide and contained 1.03 +/- 0.14 atoms of manganese per subunit shown in atomic absorption spectroscopy, which revealed that purified SOD was Mn superoxide dismutase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Cu, Zn superoxide dismutases (SODs) are rnetalloenzymes that represent one important line of defence against reactive oxygen species (ROS). A cytoplasmic Cu. Zn SOD cDNA sequence was cloned from scallop Chlamys farreri by the homology-based cloning technique. The full-length cDNA of scallop cytoplasmic Cu, Zn SOD (designated CfSOD) was 1022 bp with a 459 bp open reading frame encoding a polypeptide of 153 amino acids. The predicted amino acid sequence of CfSOD shared high identity with cytoplasmic Cu. Zn SOD in molluscs, insects, mammals and other animals, such as cytoplasmic Cu, Zn SOD in oyster Crassostrea sostrea gigas (CAD42722), mosquito Aedes aegypti (ABF18094), and cow Bos taurus (XP_584414). A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the mRNA expression of CfSOD in different tissues and the temporal expression of CfSOD in scallop challenged with Listonella anguillarum, Micrococcus luteus and Candida lipolytica respectively. Higher-level mRNA expression of CfSOD was detected in the tissues of haemocytes, gill filaments and kidney. The expression of CfSOD dropped in the first 8-16 h and then recovered after challenge with L. anguillarum and M. litteus, but no change was induced by the C. lipolytica challenge. The results indicated that CfSOD was a constitutive and inducible acute-phase protein, and could play an important role in the immune responses against L. anguillarum and M. luteus infection. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Extracellular superoxide dismutase (ECSOD) is a major extracellular antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned a novel ECSOD from the bay scallop Argopecten irradians (AiECSOD) by 3' and 5' RACE. The full-length cDNA of AiECSOD was 893 bp with a 657 bp open reading frame encoding 218 amino acids. The deduced amino acid sequence contained a putative signal peptide of 20 amino acids, and sequence comparison showed that AiECSOD had low degree of homology to ECSODs of other organisms. The genomic length of the AiECSOD gene was about 5276 bp containing five exons and six introns. The promoter region contained many putative transcription factor binding sites such as c-Myb, Oct-1, Sp1, Kruppel-like, c-ETS, NF kappa B, GATA-1, AP-1, and Ubx binding sites. Furthermore, tissue-specific expressions of AiECSOD and temporal expressions of AiECSOD in haemocytes of bay scallops challenged with bacteria Vibrio anguillarum were quantified using qRT-PCR. High levels of expression were detected in haemocytes, but not in gonad and mantle. The expression of AiECSOD reached the highest level at 12 h post-injection with V. anguillarum and then returned to normal between 24 h and 48 h post-injection. These results indicated that AiECSOD was an inducible protein and that it may play an important role in the immune responses against V anguillarum. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.