1000 resultados para Supergravity Models
Resumo:
The most general black M5-brane solution of eleven-dimensional supergravity (with a flat R4 spacetime in the brane and a regular horizon) is characterized by charge, mass and two angular momenta. We use this metric to construct general dual models of large-N QCD (at strong coupling) that depend on two free parameters. The mass spectrum of scalar particles is determined analytically (in the WKB approximation) and numerically in the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the two dimensional parameter space except along a special line. We also examine the mass spectrum of the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the compact D-brane coordinate decouple from the spectrum for large angular momenta. There are however KK modes charged under a U(1)×U(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for the string tension and action are also given.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present the higgsing of three-dimensional N = 6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N = 6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.
Resumo:
We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2(n-2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color N = 4 SYM 5-point amplitude has leading IR divergence of 1/epsilon, which is essential for the applications of this paper. We also propose a relation between the subleading-color N = 4 SYM and N = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.
Resumo:
In some supergravity models there are light weakly coupled scalar (S)-and pseudoscalar (P) particles. These particles arise following a superlight gravitino. In these models the decay SIP → γγ exists. We examine constraints on this process considering these photons as responsible by the extragalactic background light. We also consider the amount of SIP particles produced through the fusion of the cosmic background photons and contributing to the effective number of light neutrino species during primordial nucleosynthesis. We obtain bounds on the gravitino mass complementary to the existing ones.
Resumo:
Supersymmetric theories with bilinear R-parity violation can give rise to the observed neutrino masses and mixings. One important feature of such models is that the lightest supersymmetric particle might have a sufficiently large lifetime to produce detached vertices. Working in the framework of supergravity models, we analyze the potential of the LHCb experiment to search for supersymmetric models exhibiting bilinear R-parity violation. We show that the LHCb experiment can probe a large fraction of the m(0)circle times m(1/2), being able to explore gluino masses up to 1.3 TeV. The LHCb discover potential for these kinds of models is similar to the ATLAS and CMS ones in the low luminosity phase of operation of the LHC.
Resumo:
We study large N SU(N) Yang-Mills theory in three and four dimensions using a one-parameter family of supergravity models which originate from non-extremal rotating D-branes. We show explicitly that varying this angular momentum parameter decouples the Kaluza-Klein modes associated with the compact D-brane coordinate, while the mass ratios for ordinary glueballs are quite stable against this variation, and are in good agreement with the latest lattice results. We also compute the topological susceptibility and the gluon condensate as a function of the "angular momentum" parameter.
Resumo:
Supersymmetric theories with bilinear R-parity violation can give rise to the observed neutrino masses and mixings. One important feature of such models is that the lightest supersymmetric particle might have a sufficiently large lifetime to produce detached vertices. Working in the framework of supergravity models, we analyze the potential of the LHCb experiment to search for supersymmetric models exhibiting bilinear R-parity violation. We show that the LHCb experiment can probe a large fraction of the m(0)circle times m(1/2), being able to explore gluino masses up to 1.3 TeV. The LHCb discover potential for these kinds of models is similar to the ATLAS and CMS ones in the low luminosity phase of operation of the LHC.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
We modify the ansatz for embedding chameleon scalars in string theory proposed in [1] by considering a racetrack superpotential with two KKLT-type exponentials e ia instead of one. This satisfies all experimental constraints, while also allowing for the chameleon to be light enough on cosmological scales to be phenomenologically interesting. © 2013 SISSA, Trieste, Italy.
Resumo:
The main object of this thesis is the analysis and the quantization of spinning particle models which employ extended ”one dimensional supergravity” on the worldline, and their relation to the theory of higher spin fields (HS). In the first part of this work we have described the classical theory of massless spinning particles with an SO(N) extended supergravity multiplet on the worldline, in flat and more generally in maximally symmetric backgrounds. These (non)linear sigma models describe, upon quantization, the dynamics of particles with spin N/2. Then we have analyzed carefully the quantization of spinning particles with SO(N) extended supergravity on the worldline, for every N and in every dimension D. The physical sector of the Hilbert space reveals an interesting geometrical structure: the generalized higher spin curvature (HSC). We have shown, in particular, that these models of spinning particles describe a subclass of HS fields whose equations of motions are conformally invariant at the free level; in D = 4 this subclass describes all massless representations of the Poincar´e group. In the third part of this work we have considered the one-loop quantization of SO(N) spinning particle models by studying the corresponding partition function on the circle. After the gauge fixing of the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which have been computed by using orthogonal polynomial techniques. Finally we have extend our canonical analysis, described previously for flat space, to maximally symmetric target spaces (i.e. (A)dS background). The quantization of these models produce (A)dS HSC as the physical states of the Hilbert space; we have used an iterative procedure and Pochhammer functions to solve the differential Bianchi identity in maximally symmetric spaces. Motivated by the correspondence between SO(N) spinning particle models and HS gauge theory, and by the notorious difficulty one finds in constructing an interacting theory for fields with spin greater than two, we have used these one dimensional supergravity models to study and extract informations on HS. In the last part of this work we have constructed spinning particle models with sp(2) R symmetry, coupled to Hyper K¨ahler and Quaternionic-K¨ahler (QK) backgrounds.
Resumo:
We classify the N = 4 supersymmetric AdS(5) backgrounds that arise as solutions of five-dimensional N = 4 gauged supergravity. We express our results in terms of the allowed embedding tensor components and identify the structure of the associated gauge groups. We show that the moduli space of these AdS vacua is of the form SU(1, m)/ (U(1) x SU(m)) and discuss our results regarding holographically dual N = 2 SCFTs and their conformal manifolds.
Resumo:
We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753 , to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry- breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems. © 2013 SISSA.
Resumo:
The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Resumo:
The cosmological standard view is based on the assumptions of homogeneity, isotropy and general relativistic gravitational interaction. These alone are not sufficient for describing the current cosmological observations of accelerated expansion of space. Although general relativity is extremely accurately tested to describe the local gravitational phenomena, there is a strong demand for modifying either the energy content of the universe or the gravitational interaction itself to account for the accelerated expansion. By adding a non-luminous matter component and a constant energy component with negative pressure, the observations can be explained with general relativity. Gravitation, cosmological models and their observational phenomenology are discussed in this thesis. Several classes of dark energy models that are motivated by theories outside the standard formulation of physics were studied with emphasis on the observational interpretation. All the cosmological models that seek to explain the cosmological observations, must also conform to the local phenomena. This poses stringent conditions for the physically viable cosmological models. Predictions from a supergravity quintessence model was compared to Supernova 1a data and several metric gravity models were studied with local experimental results. Polytropic stellar configurations of solar, white dwarf and neutron stars were numerically studied with modified gravity models. The main interest was to study the spacetime around the stars. The results shed light on the viability of the studied cosmological models.