958 resultados para Superconducting transition temperature
Resumo:
Raman studies on Ca4Al2O5.7Fe2As2 superconductor in the temperature range of 5K to 300 K, covering the superconducting transition temperature T-c = 28.3 K, reveal that the Raman mode at similar to 230 cm(-1) shows a sharp jump in frequency by similar to 2% and linewidth increases by similar to 175% at T-o similar to 60 K. Below T-o, anomalous softening of the mode frequency and a large decrease by similar to 10 cm(-1) in the linewidth are observed. These precursor effects at T-0 (similar to 2T(c)) are attributed to significant superconducting fluctuations, possibly enhanced due to reduced dimensionality arising from weak coupling between the well separated (similar to 15 angstrom) Fe-As layers in the unit cell. A large blue-shift of the mode frequency between 300 K and 60 K (similar to 7%) indicates strong spin-phonon coupling in this superconductor. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4724206]
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.
Resumo:
Temperature (12 K <= T <= 300 K) dependent extended x-ray absorption fine structure (EXAFS) studies at the Fe K edge in FeSe1-xTex (x = 0, 0.5 and 1.0) compounds have been carried out to understand the reasons for the increase in T-C upon Te doping in FeSe. While local distortions are present near superconducting onset in FeSe and FeSe0.5Te0.5, they seem to be absent in non superconducting FeTe. Of crucial importance is the variation of anion height. In FeSe0.5Te0.5, near the superconducting onset, the two heights, h(Fe-Se) and h(Fe-Te) show a nearly opposite behaviour. These changes indicate a possible correlation between Fe-chalcogen hybridization and the superconducting transition temperature in these Fe-chalcogenides.
Resumo:
Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.
Resumo:
The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.
Resumo:
Photoemission spectra of YBa2Cu3O7-δ in the normal and superconducting states provide direct evidence for dimerization of oxygen below Tc. Cu2+ is found to reduce to Cu1+ concomitantly. These changes may be of vital importance to the mechanism of high-temperature superconductivity.
Resumo:
We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.
Resumo:
High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.
Resumo:
We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.
Resumo:
The dielectric constants of lead iron niobate (PFN) and 40% lead zinc niobate (PZN) added to lead iron niobate (PFN0.6-PZN(0.4)) have been measured as a function of pressure up to 6 GPa under isothermal conditions between room temperature and 348 K. The relaxer transition temperature measured at 1 kHz excitation frequency varies at a rate -24.5 K/GPa for PFN and at a rate of - 28.8 K/GPa for the PFN0.6-PZN(0.4) composition.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
Effect of disorder on the electrical resistance near the superconducting transition temperature in the paracoherence region of high temperature YBa2CU3O7-delta (YBCO) thin film superconductor is reported. For this, c-axis oriented YBa2Cu3O7-delta thin films having superconducting transition width varying between 0.27 K and 6 K were deposited using laser ablation and high pressure oxygen sputtering techniques. Disorder in these films was further created by using 100 MeV oxygen and 200 MeV silver ions with varying fluences. It is observed that the critical exponent in the paracoherence region for films with high transition temperature and small transition width is in agreement with the theoretically predicted value (gamma = 1.33) and is not affected by disorder, while for films with lower transition temperature and larger transition width the value of exponent is much larger as compared to that theoretically predicted and it varies from sample to sample and usually changes with disorder induced by radiation. This difference in the behaviour of the exponent has been explained on the basis of differences in the strength of weak links and the transition between temperatures T. and T, is interpreted as a percolation like transition with disorder. (c) 2006 Elsevier B.V. All rights reserved.