937 resultados para Sulphur Chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the results of our JCMT spectral line survey of molecular gas towards ultracompact HII regions with the predictions of models of sulphur chemistry in hot cores. We investigate the range of evolutionary models that are consistent with the observed physical conditions and chemical abundances, and see to what extent it is possible to constrain core ages by comparing abundances with the predictions of chemical models. The observed abundance ratios vary little from source to source, suggesting that all the sources are at a similar evolutionary stage. The models are capable of predicting the observed abundances of H2S, SO, SO2, and CS. The models fail to predict the amount of OCS observed, suggesting that an alternative formation route is required. An initial H2S abundance from grain mantle evaporation of similar to 10(-7) is preferred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulphur is a non conservative major element and is the most active species in the redox processes in nature, especially in aquatic environment . The varying oxidative states from-2 to +6 make it possible to enter into many of the biogeochemical processes. Thus the history, present and future of the chemical composition and behaviour of the natural aquatic systems and sediments have footprints of the sulphur chemistry.Mangroves are considered to be the most productive, fishery supportive ecosystem operating in the intertidal regions. The interlinking of the mangroves with the sulphur chemistry is attempted here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographies.