938 resultados para Sulla, Lucius Cornelius, B.C. 138-78.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Photographs and translation
Resumo:
Photograph and notes by A.E. Gordon
Resumo:
Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
We present a first-principles theory of the equilibrium b.c.c.-f.c.c. interface at coexistence using the density functional method. We assume that the interfacial region has local body-centred tetragonal (b.c.t.) symmetry and predict typical interfacial widths to be of order 2 to 3 lattice spacings with typical energies close to 0.05 J/m2. These quantities are in good agreement with laboratory measurements on coherent interfaces.
Resumo:
Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.
Resumo:
Abstract: Focusing on Obadiah and Psalm 137, this article provides biblical evidence for an Edomite treaty betrayal of Judah during the Babylonian crisis ca. 588–586 B.C.E. After setting a context that includes the use of treaties in the ancient Near East to establish expectations for political relationships and the likelihood that Edom could operate as a political entity in the Judahite Negev during the Babylonian assault, this article demonstrates that Obadiah’s poetics include a density of inverted form and content (a reversal motif) pointing to treaty betrayal. Obadiah’s modifications of Jeremiah 49, a text with close thematic and terminological parallels, evidence an Edomite treaty betrayal of Judah. Moreover, the study shows that Obadiah is replete with treaty allusions. A study of Psalm 137 in comparison with Aramaic treaty texts from Sefire reveals that this difficult psalm also evidences a treaty betrayal by Edom and includes elements appropriate for treaty curses. The article closes with a discussion of piecemeal data from a few other biblical texts, a criticism of the view that Edom was innocent during the Babylonian crisis, and a suggestion that this treaty betrayal may have contributed to the production of some anti-Edom biblical material.
Resumo:
Report of Opening Session (pdf 42 KB) Report of Governing Council Meeting (pdf 89 KB) Reports of Science Board and Committees: Science Board (pdf 88 KB) Study Group on North Pacific Ecosystem Status Report and Regional Analysis Center Biological Oceanography Committee (pdf 57 KB) Working Group 14: Effective sampling of micronekton Advisory Panel on Marine Birds and Mammals Fishery Science Committee (pdf 37 KB) Working Group 16: Climate change, shifts to fish production, and fisheries management Marine Environmental Quality Committee (pdf 62 KB) Working Group 15: Ecology of Harmful Algal Blooms (HABs) in the North Pacific Physical Oceanography and Climate Committee (pdf 34 KB) Working Group 13: CO2 in the North Pacific Technical Committee on Data Exchange (pdf 24 KB) Implementation Panel on the CCCC Program (pdf 39 KB) BASS Task Team (pdf 32 KB) Advisory Panel on Iron Fertilization Experiment MODEL Task Team (pdf 22 KB) MONITOR Task Team (pdf 32 KB) Advisory Panel on Continuous Plankton Recorder Survey in the North Pacific REX Task Team (pdf 21 KB) Report of the Finance and Administration Committee (pdf 53 KB) List of Participants (pdf 67 KB) List of Acronyms (pdf 13 KB)
Resumo:
Document has 52 pages.
Resumo:
pdf contains 47 pages
Resumo:
The foil-excited the spectrum of highly stripped titanium ions between 12-40 nm has been studied. Titanium ions of 80 and 120 MeV were provided by the HI-13 tandem accelerator at the China Institute of Atomic Energy. GIM-957 XUV-VUV monochromator was refocused to get highly-resolved spectra. Our experimental results and the published spectral data of laser-produced plasma show agreement in nearly all cases within +/- 0.03 nm. The spectra contained some weak or strong lines previously unclassified. These spectral lines mainly belong to 2s2p(2) for TiXVIII, 2p(3) for TiXVIII, 2s2p(3) for TiXVII, 2p(6)4p for Ti XII and 2p(6)3d for Ti XII transitions.