1000 resultados para Sugarcane Expansion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, increasing demands for biofuels have intensified the rate of land-use change (LUC) for expansion of bioenergy crops. In Brazil, the world\'s largest sugarcane-ethanol producer, sugarcane area has expanded by 35% (3.2 Mha) in the last decade. Sugarcane expansion has resulted in extensive pastures being subjected to intensive mechanization and large inputs of agrochemicals, which have direct implications on soil quality (SQ). We hypothesized that LUC to support sugarcane expansion leads to overall SQ degradation. To test this hypothesis we conducted a field-study at three sites in the central-southern region, to assess the SQ response to the primary LUC sequence (i.e., native vegetation to pasture to sugarcane) associated to sugarcane expansion in Brazil. At each land use site undisturbed and disturbed soil samples were collected from the 0-10, 10-20 and 20-30 cm depths. Soil chemical and physical attributes were measured through on-farm and laboratory analyses. A dataset of soil biological attributes was also included in this study. Initially, the LUC effects on each individual soil indicator were quantified. Afterward, the LUC effects on overall SQ were assessed using the Soil Management Assessment Framework (SMAF). Furthermore, six SQ indexes (SQI) were developed using approaches with increasing complexity. Our results showed that long-term conversion from native vegetation to extensive pasture led to soil acidification, significant depletion of soil organic carbon (SOC) and macronutrients [especially phosphorus (P)] and severe soil compaction, which creates an unbalanced ratio between water- and air-filled pore space within the soil and increases mechanical resistance to root growth. Conversion from pasture to sugarcane improved soil chemical quality by correcting for acidity and increasing macronutrient levels. Despite those improvements, most of the P added by fertilizer accumulated in less plant-available P forms, confirming the key role of organic P has in providing available P to plants in Brazilian soils. Long-term sugarcane production subsequently led to further SOC depletions. Sugarcane production had slight negative impacts on soil physical attributes compared to pasture land. Although tillage performed for sugarcane planting and replanting alleviates soil compaction, our data suggested that the effects are short-term with persistent, reoccurring soil consolidation that increases erosion risk over time. These soil physical changes, induced by LUC, were detected by quantitative soil physical properties as well as by visual evaluation of soil structure (VESS), an on-farm and user-friendly method for evaluating SQ. The SMAF efficiently detected overall SQ response to LUC and it could be reliably used under Brazilian soil conditions. Furthermore, since all of the SQI values developed in this study were able to rank SQ among land uses. We recommend that simpler and more cost-effective SQI strategies using a small number of carefully chosen soil indicators, such as: pH, P, K, VESS and SOC, and proportional weighting within of each soil sectors (chemical, physical and biological) be used as a protocol for SQ assessments in Brazilian sugarcane areas. The SMAF and SQI scores suggested that long-term conversion from native vegetation to extensive pasture depleted overall SQ, driven by decreases in chemical, physical and biological indicators. In contrast, conversion from pasture to sugarcane had no negative impacts on overall SQ, mainly because chemical improvements offset negative impacts on biological and physical indicators. Therefore, our findings can be used as scientific base by farmers, extension agents and public policy makers to adopt and develop management strategies that sustain and/or improving SQ and the sustainability of sugarcane production in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study approaches the sugarcane culture expansion in Southwestern Goiás, especially in Mineiros, Quirinópolis and Rio Verde counties, which represent different times and responses to this process. The current logistics structure and future prospects for sugarcane and its derivatives transportation are studied at national level with emphasis to the aforementioned micro-region. Maps showing land use and land cover in three different years were generated from Landsat TM-5 satellite images and they were used to analyze the dynamics of changes in land use and in land cover. The region is marked by strong and rapid growth in the agricultural sector and its sugar-energy industry has been expanding in recent years, although with different aspects among its counties. Since it is a promising region in this sector, due to the favorable soil and weather conditions to the crop, the region requires more investment and planning in logistics to ensure production flow and to make it stronger within domestic and foreign markets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

São Paulo state, Brazil, has been highlighted by the sugarcane crop expansion. The actual scenario of climate and land use changes, bring attention for the large-scale water productivity (WP) analyses. MODIS images were used together with gridded weather data for these analyses. A generalized sugarcane growing cycle inside a crop land mask, from September 2011 to October 2012, was considered in the main growing regions of the state. Actual evapotranspiration (ET) is quantified by the SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm, the biomass production (BIO) by the RUE (Radiation Use Efficiency) Monteith?s model and WP is considered as the ratio of BIO to ET. During the four generalized sugarcane crop phases, the mean ET values ranged from 0.6 to 4.0 mm day-1; BIO rates were between 20 and 200 kg ha-1 day-1, resulting in WP ranging from 2.8 to 6.0 kg m-3. Soil moisture indicators are applied, indicating benefits from supplementary irrigation during the grand growth phase, wherever there is water availability for this practice. The quantification of the large-scale water variables may subsidize the rational water resources management under the sugarcane expansion and water scarcity scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Sociais - FFC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform–near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases’ ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Modern sugarcane (Saccharum spp.) is the leading sugar crop and a primary energy crop. It has the highest level of `vertical` redundancy (2n = 12x = 120) of all polyploid plants studied to date. It was produced about a century ago through hybridization between two autopolyploid species, namely S. officinarum and S. spontaneum. In order to investigate the genome dynamics in this highly polyploid context, we sequenced and compared seven hom(oe)ologous haplotypes (bacterial artificial chromosome clones). Our analysis revealed a high level of gene retention and colinearity, as well as high gene structure and sequence conservation, with an average sequence divergence of 4% for exons. Remarkably, all of the hom(oe)ologous genes were predicted as being functional (except for one gene fragment) and showed signs of evolving under purifying selection, with the exception of genes within segmental duplications. By contrast, transposable elements displayed a general absence of colinearity among hom(oe)ologous haplotypes and appeared to have undergone dynamic expansion in Saccharum, compared with sorghum, its close relative in the Andropogonea tribe. These results reinforce the general trend emerging from recent studies indicating the diverse and nuanced effect of polyploidy on genome dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol production from sugarcane, mainly in Brazil, on the basis of first-generation technology (22.5 billion liters, in 2007/2008 season, in 3.4 million hectares) replaces 1% of the gasoline used in the world today and is highly competitive in economic terms with ethanol produced from other crops in the USA and Europe. In this paper we discuss the potential for sugarcane ethanol expansion from two angles: (1) productivity gains which would allow greater production in the same area and (2) geographical expansion to larger areas. The potential of first-generation technology for the production of ethanol from sugarcane is far from being exhausted. There are gains in productivity of approximately a factor of two from genetically modified varieties and a geographical expansion by a factor of ten of the present level of production in many sugar-producing countries. The replacement of 10% of the gasoline used in the world by ethanol from sugarcane seems possible before second-generation technology reaches technological maturity and possibly economic competitiveness. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims to analyze the conflict over land in Postal do Paranapanema (state of São Paulo, Brazil), considering the competition for water resources and the degradation of environmental health in the area called the agrohidronegocio sugarcane. The survey results indicate that the expansion of sugarcane cultivation in this region is causing the worsening health of workers. Moreover, the research also seeks to identify alternative models to the hegemonic project of regional development based on matrix agrohidroenergetica. For this, the research has as interlocutors various types of social movements such as the Landless Workers Movement and the Movement of Dam Affected, and union leaders.