950 resultados para Sugarcane -- Genetic engineering
Resumo:
Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.
Resumo:
Progress has been made in establishing a genetic transformation model for Laminaria japonica (Phaeophyta, Laminariales). The model includes introduction of foreign genes by biolistic bombardment, use of promoter SV40 to drive gene expression, algal regeneration by parthenogenesis and selection by chloramphenicol or hygromycin.
Resumo:
The paper systematically discusses the mechanism for glycinebetaine to improve plant salt resistance and its research advances in genetic engineering at home and abroad as well as summarizing the research progresses about the key enzymes and their genetic engineering in glycinebetaine biosynthesis. It suggests that on the basis of further understanding the mechanism for glycinebetaine to improve plant salt resistance,the transformation of the genes relating to glycinebetaine biosynthesis should be carried out in major crops so that new plant varieties resistant to salt can be obtained.
Resumo:
The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.
Resumo:
Este título pertenece a una serie que ofrece en profundidad una visión de las células en todo el mundo vivo, su estructura y los procesos en que se basa la vida en la Tierra. En él se explica cómo se crea el ADN y cómo se lee su código. Explora la ingeniería genética y la terapia génica, así como las áreas de la investigación con células madre y clonación. Se dan ejemplos, como el reciente uso de la sangre del cordón umbilical de un bebé para proporcionar células madre para el ensayo de nuevos fármacos. Tiene índice, glosario, referencias bibliográficas y un cuadro con algunos de los principales acontecimientos de la genética.
Resumo:
Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.