999 resultados para Sugar Part
Resumo:
We present the synthesis of the isobicyclo-DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo-DNA synthesis. Dodecamers containing single isobicyclo-thymidine incorporations, fully modified A- and T-containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo-DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self-pairing. Isobicyclo-DNA forms preferentially B-DNA-like duplexes with DNA and A-like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self-paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo-DNA is stable in fetal bovine serum and does not elicit RNaseH activity.
Resumo:
The ability of two-dimensional gel electrophoresis (2-DE) to separate glycoproteins was exploited to separate distinct glycoforms of kappa-casein that differed only in the number of O-glycans that were attached. To determine where the glycans were attached, the individual glycoforms were digested in-gel with pepsin and the released glycopeptides were identified from characteristic sugar ions in the tandem mass spectrometry (MS) spectra. The O-glycosylation sites were identified by tandem MS after replacement of the glycans with ammonia/aminoethanethiol. The results showed that glycans were not randomly distributed among the five potential glycosylation sites in kappa-casein. Rather, glycosylation of the monoglycoform could only be detected at a single site, T-152. Similarly the diglycoform appeared to be modified exclusively at T-152 and T-163, while the triglycoform was modified at T-152, T-163 and T-154. While low levels of glycosylation at other sites cannot be excluded the hierarchy of site occupation between glycoforms was clearly evident and argues for an ordered addition of glycans to the protein. Since all five potential O-glycosylation sites can be glycosylated in vivo, it would appear that certain sites remain latent until other sites are occupied. The determination of glycosylation site occupancy in individual glycoforms separated by 2-DE revealed a distinct pattern of in vivo glycosylation that has not been recognized previously.
Resumo:
The kinetics of sugar cane bagasse cellulose saccharification and the decomposition of glucose under extremely low acid (ELA) conditions, (0.07%), 0.14%, and 0.28% H2SO4, and at high temperatures were investigated using batch reactors. The first-order rate constants were obtained by weight loss, remaining glucose, and fitting glucose concentration profiles determined with HPLC using the Saeman model. The maximum glucose yields reached 67.6% (200 degrees C, 0.07% H2SO4, 30 min), 69.8% (210 degrees C, 0.14% H2SO4, 10 min), and 67.3% (210 degrees C, 0.28% H2SO4, 6 min). ELA conditions produced remarkable glucose yields when applied to bagasse cellulose. The first-order rate constants were used to calculate activation energies and extrathermodynamic parameters to elucidate the reaction mechanism under ELA conditions. The effect of acid concentration on cellulose hydrolysis and glucose decomposition was also investigated. The observed activation energies and reaction orders with respect to hydronium ion for cellulose hydrolysis and glucose decomposition were 184.9 and 124.5 kJ/mol and 1.27 and 0.75, respectively.
Resumo:
10.1002/hlca.19950780816.abs A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D-ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D-(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D-bicyclodeoxynucleoside derivatives 1-7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D-bicyclothymidine and α-D-bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D)efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.
Resumo:
A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Brazil consolidated itself as the largest world producer of sugarcane, sugar and ethanol. The creation of the Programa Nacional do Alcool - PROALCOOL and the growing use of cars with flexible motors were some of the factors that helped to motivate still more the production. Evolutions in the agricultural and industrial research did the Brazilian competitiveness in sugar and ethanol globally elevated, what is evidenced when comparing the amount produced at the country and the production costs, which turned a big one differential. Therefore, the administration of costs is of great relevance to the sugar and ethanol companies, for representing a significant rationalization in the production processes, with economy of resources and the reach of better earnings, besides reducing the operational risk pertinent at the fixed costs of production. Thus, the present work has for objective to analyze the costs structure of sugar and ethanol companies of the Center-south area of the country through an empiric-analytical study based in methodologies and concepts extracted of the costs accounting. It is verified that great part of the costs and operational expenses have variable behavior, a positive factor for the sector reducing the operational risk of the activity. The main restraint of this study is the sample of five years and 10% of the number of plants in Brazil that although they represent 30% of the national production, don`t allow the generalization of the model.
Resumo:
The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.
Resumo:
ABSTRACT Large salty areas in the Brazilian semi-arid region have limited farming in Northeastern Brazil. One example is the sugar cane cultivation, which reinforces the need of selecting varieties that are more tolerant to salinity. The objective of this study was to evaluate the effect of salinity on growth of ten varieties of sugar cane. The experiment was conducted in a greenhouse, set in the experimental field of Embrapa Semiárido, in Petrolina, Pernambuco State. The experimental design was randomized blocks arranged in a 6 X 10 factorial arrangement, comprised of six levels of salinity (0, 1.0, 2.0, 4.0, 6.0 and 8.0 dS m-1) and ten sugar cane varieties (VAT 90212; RB 72454; RB 867515; Q 124; RB 961003; RB 957508; SP791011; RB 835089; RB 92579 and SP 943206). Salt levels of irrigation water were obtained by adding NaCl, CaCl2.2H2O and MgSO4.7H2O to achieve an equivalent ratio among Na:Ca:Mg of 7:2:1. Sixty days later, plant height, stem diameter (base), number of leaves, stalks and sprouts, leaf area and fresh and dry mass of the aerial part and roots were all measured. The varieties of sugar cane showed similar responses for growth reduction as soil salinity increases, being considered moderately sensitive to salinity.