935 resultados para Subunit Organization


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionotropic glutamate receptors, neurotransmitter-activated ion channels that mediate excitatory synaptic transmission in the central nervous system, are oligomeric membrane proteins of unknown subunit stoichiometry. To determine the subunit stoichiometry we have used a functional assay based on the blockade of two alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor subunit 1 (GluR1) mutant subunits selectively engineered to exhibit differential sensitivity to the open channel blockers phencyclidine and dizolcipine (MK-801). Coinjection into amphibian oocytes of weakly sensitive with highly sensitive subunit complementary RNAs produces functional heteromeric channels with mixed blocker sensitivities. Increasing the fraction of the highly sensitive subunit augmented the proportion of drug-sensitive receptors. Analysis of the data using a model based on random aggregation of receptor subunits allowed us to determine a pentameric stoichiometry for GluR1. This finding supports the view that a pentameric subunit organization underlies the structure of the neuronal ionotropic glutamate receptor gene family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, biomarkers and transcriptional factor motifs were identified in order to investigate the etiology and phenotypic severity of Down syndrome. GSE 1281, GSE 1611, and GSE 5390 were downloaded from the gene expression ominibus (GEO). A robust multiarray analysis (RMA) algorithm was applied to detect differentially expressed genes (DEGs). In order to screen for biological pathways and to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the database for annotation, visualization, and integrated discovery (DAVID) was used to carry out a gene ontology (GO) function enrichment for DEGs. Finally, a transcriptional regulatory network was constructed, and a hypergeometric distribution test was applied to select for significantly enriched transcriptional factor motifs. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were each up-regulated two-fold in Down syndrome samples compared to normal samples; of these, SON and TTC3 were newly reported. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were located on human chromosome 21 (mouse chromosome 16). The DEGs were significantly enriched in macromolecular complex subunit organization and focal adhesion pathways. Eleven significantly enriched transcription factor motifs (PAX5, EGR1, XBP1, SREBP1, OLF1, MZF1, NFY, NFKAPPAB, MYCMAX, NFE2, and RP58) were identified. The DEGs and transcription factor motifs identified in our study provide biomarkers for the understanding of Down syndrome pathogenesis and progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The membrane organization of the alpha-subunit of purified (Na+ + K+)-ATPase ((Na+ + K+)-dependent adenosine triphosphate phosphorylase, EC 3.6.1.3) and of the microsomal enzyme of the kidney of the toad Bufo marinus was compared by using controlled trypsinolysis. With both enzyme preparations, digestions performed in the presence of Na+ yielded a 73 kDa fragment and in the presence of K+ a 56 kDa, a 40 kDa and small amounts of a 83 kDa fragment from the 96 kDa alpha-subunit. In contrast to mammalian preparations (Jørgensen, P.L. (1975) Biochim. Biophys. Acta 401, 399-415), trypsinolysis of the purified amphibian enzyme led to a biphasic loss of (Na+ + K+)-ATPase activity in the presence of both Na+ and K+. These data could be correlated with an early rapid cleavage of 3 kDa from the alpha-subunit in both ionic conditions and a slower degradation of the remaining 93 kDa polypeptide. On the other hand, in the microsomal enzyme, a 3 kDa shift of the alpha-subunit could only be produced in the presence of Na+. Our data indicate that (1) purification of the amphibian enzyme with detergent does not influence the overall topology of the alpha-subunit but produces a distinct structural alteration of its N-terminus and (2) the amphibian kidney enzyme responds to cations with similar conformational transitions as the mammalian kidney enzyme. In addition, anti alpha-serum used on digested enzyme samples revealed on immunoblots that the 40 kDa fragment was better recognized than the 56 kDa fragment. It is concluded that the NH2-terminal of the alpha-subunit contains more antigenic sites than the COOH-terminal domain in agreement with the results of Farley et al. (Farley, R.A., Ochoa, G.T. and Kudrow, A. (1986) Am. J. Physiol. 250, C896-C906).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After birth, most of insulin-like growth factor I and II (IGFs) circulate as a ternary complex formed by the association of IGF binding protein 3-IGF complexes with a serum protein called acid-labile subunit (ALS). ALS retains the IGF binding protein-3-IGF complexes in the vascular compartment and extends the t1/2 of IGFs in the circulation. Synthesis of ALS occurs mainly in liver after birth and is stimulated by growth hormone. To study the basis for this regulation, we cloned and characterized the mouse ALS gene. Comparison of genomic and cDNA sequences indicated that the gene is composed of two exons separated by a 1126-bp intron. Exon 1 encodes the first 5 amino acids of the signal peptide and contributes the first nucleotide of codon 6. Exon 2 contributes the last 2 nt of codon 6 and encodes the remaining 17 amino acids of the signal peptide as well as the 580 amino acids of the mature protein. The polyadenylylation signal, ATTAAA, is located 241 bp from the termination codon. The cDNA and genomic DNA diverge 16 bp downstream from this signal. Transcription initiation was mapped to 11 sites over a 140-bp TATA-less region. The DNA fragment extending from nt -805 to -11 (ATG, +1) directed basal and growth hormone-regulated expression of a luciferase reporter plasmid in the rat liver cell line H4-II-E. Finally, the ALS gene was mapped to mouse chromosome 17 by fluorescence in situ hybridization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seven subunit Arp2/3 complex is a highly conserved nucleation factor of actin microfilaments. We have isolated the genomic sequence encoding a putative Arp3a protein of the moss Physcomitrella patens. The disruption of this ARP3A gene by allele replacement has generated loss-of-function mutants displaying a complex developmental phenotype. The loss-of function of ARP3A gene results in shortened, almost cubic chloronemal cells displaying affected tip growth and lacking differentiation to caulonemal cells. In moss arp3a mutants, buds differentiate directly from chloronemata to form stunted leafy shoots having differentiated leaves similar to wild type. Yet, rhizoids never differentiate from stem epidermal cells. To characterize the F-actin organization in the arp3a-mutated cells, we disrupted ARP3A gene in the previously described HGT1 strain expressing conditionally the GFP-talin marker. In vivo observation of the F-actin cytoskeleton during P. patens development demonstrated that loss-of-function of Arp3a is associated with the disappearance of specific F-actin cortical structures associated with the establishment of localized cellular growth domains. Finally, we show that constitutive expression of the P. patens Arp3a and its Arabidopsis thaliana orthologs efficiently complement the mutated phenotype indicating a high degree of evolutionary conservation of the Arp3 function in land plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of human-rodent somatic cell hybrids were investigated by Southern blot analysis for the presence or absence of twenty-six molecular markers and three isozyme loci from human chromosome 19. Based on the co-retention of these markers in the various independent hybrid clones containing portions of human chromosome 19 and on pulsed field mapping, chromosome 19 is divided into twenty ordered regions. The most likely marker order for the chromosome is: (LDLR, C3)-(cen-MANNB)-D19S7-PEPD-D19S9-GPI-TGF$ \beta$-(CYP2A, NCA, CGM2, BCKAD)-PSG1a-(D19S8, XRCC1)-(D19S19, ATP1A3)-(D19S37, APOC2)-CKMM-ERCC2-ERCC1-(D19S62, D19S51)-D19S6-D19S50-D19S22-(CGB, FTL)-qter.^ The region of 19q between the proximal marker D19S7 and the distal gene coding for the beta subunit of chorionic gonadotropin (CGB) is about 37 Mb in size and covers about 37 cM genetic distance. The ration of genetic to physical distance on 19q is therefore very close to the genomic average OF 1 cM/Mb. Estimates of physical distances for intervals between chromosome 19 markers were calculated using a mapping function which estimates distances based on the number of breaks in hybrid clone panels. The consensus genetic distances between individual markers (established at HBM10) were compared to these estimates of physical distances. The close agreement between the two estimates suggested that spontaneously broken hybrids are as appropriate for this type of study as radiation hybrids.^ All three DNA repair genes located on chromosome 19 were found to have homologues on Chinese hamster chromosome 9, which is hemizygous in CHO cells, providing an explanation for the apparent ease with which mutations at these loci were identified in CHO cells. Homologues of CKMM and TGF$\beta$ (from human chromosome 19q) and a mini-satellite DNA specific to the distal region of human chromosome 19q were also mapped to Chinese hamster 9. Markers from 19p did not map to this hamster chromosome. Thus the q-arm of chromosome 19, at least between the genes PEPD and ERCC1, appears to be a linkage group which is conserved intact between humans and Chinese hamsters. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrate reductase in Escherichia coli is a membrane-bound anaerobic enzyme that is repressed by oxygen and induced by nitrate. The genetic organization of the structural genes for the two larger subunits of nitrate reductase ((alpha) and (beta)) was determined by immunoprecipitation analysis of the formation of these proteins in nitrate reductase-deficient mutants resulting from transposon Tn5 mutagenesis. The results suggested that the genes encoding the (alpha) and (beta) subunits (narG and H) were arranged in an operon with transcription in the direction promoter(--->)(alpha)(--->)(beta). Segments of the chromosome containing the Tn5 inserts from several of the mutants were cloned into plasmid pBR322 and the positions of the transposons determined by restriction mapping. The Tn5 insertion sites were localized on two contiguous EcoRI fragments spanning about 6.6 kilobases of DNA. The narI gene (proposed to encode the (gamma) subunit) was positioned immediately downstream from the (beta)-gene (narH) by Southern analysis of Tn10 insertions into the narI locus. A Tn10 insertion into the narK locus, proposed to encode a nitrate-sensitive repressor of other anaerobic enzymes, was located about 1.5 kilobases upstream from the narGHI operon promoter. The narL locus, proposed to encode a nitrate-sensitive positive regulator of the narGHI operon and known to be genetically linked to the other nar genes, was demonstrated to lie outside a 19.3-kilobase region of the chromosome which encompasses the other nar genes. The physical limit of the narGHI promoter was defined by studying the effect of Tn5 insertions into a hybrid plasmid containing the functional operon. The points of origin of the coding regions for the (alpha) and (beta) genes were deduced by alignment of the chromosomal map of Tn5 insertion sites with the sizes of (alpha) and (beta) subunit fragments produced by plasmids carrying these Tn5 inserts in the nar operon. The coding region for the (alpha) subunit (143,000 daltons) begins about 250 nucleotides downstream from the deduced limit of the promoter region and includes about 4.0 kilobases of DNA; the region encoding (beta) (60,000 daltons) lies immediately downstream from the (alpha)-gene and is approximately 1.6 kilobases in length. The adjacent region encoding the (gamma) subunit (19,000 daltons) is approximately 0.5 kilobase in length. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycoprotein (GP) Ib-IX complex, the second most abundant receptor expressed on the platelet surface, plays critical roles in haemostasis and thrombosis by binding to its ligand, von Willebrand factor (vWF). Defect or malfunction of the complex leads to severe bleeding disorders, heart attack or stroke. Comprised of three type I transmembrane subunits—GPIbα, GPIbβ and GPIX, efficient expression of the GPIb-IX complex requires all three subunits, as evident from genetic mutations identified in the patients and reproduced in transfected Chinese hamster ovary (CHO) cells. However, how the subunits are assembled together and how the complex function is regulated is not fully clear. By probing the interactions among the three subunits in transfected cells, we have demonstrated that the transmembrane domains of the three subunits interact with one another, facilitating formation of the two membrane-proximal disulfide bonds between GPIbα and GPIbβ. We have also identified the interface between extracellular domains of GPIbβ and GPIX, and provided evidence suggesting a direct interaction between extracellular domains of GPIbα and GPIX. All of these interactions are not only critical for correct assembly and consequently efficient expression of the GPIb-IX complex on the cell surface, but also for its function, such as the proper ligand binding, since removing the two inter-subunit disulfide bonds significantly hampers vWF binding to the complex under both static and physiological flow conditions. The two inter-subunit disulfide bonds are also critical for regulating the ectodomain shedding of GPIbα by the GPIbβ cytoplasmic domain. Mutations in the juxtamembrane region of the GPIbβ cytoplasmic domain deregulate GPIbα shedding, and such deregulation is further enhanced when the two inter-subunit disulfide bonds are removed. In summary, we have established the overall organization of the GPIb-IX complex, and the importance of proper organization on its function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incubation of Na/K-ATPase with ascorbate plus H2O2 produces specific cleavage of the α subunit. Five fragments with intact C termini and complementary fragments with intact N termini were observed. The β subunit is not cleaved. Cleavages depend on the presence of contaminant or added Fe2+ ions, as inferred by suppression of cleavages with nonspecific metal complexants (histidine, EDTA, phenanthroline) or the Fe3+-specific complexant desferrioxamine, or acceleration of cleavages by addition of low concentrations of Fe2+ but not of other heavy metal ions. Na/K-ATPase is inactivated in addition to cleavage, and both effects are insensitive to OH⋅ radical scavengers. Cleavages are sensitive to conformation. In low ionic strength media (E2) or media containing Rb ions [E2(Rb)], cleavage is much faster than in high ionic strength media (E1) or media containing Na ions (E1Na). N-terminal fragments and two C-terminal fragments (N-terminals E214 and V712) have been identified by amino acid sequencing. Approximate positions of other cleavages were determined with specific antibodies. The results suggest that Fe2+ (or Fe3+) ions bind with high affinity at the cytoplasmic surface and catalyze cleavages of peptide bonds close to the Fe2+ (or Fe3+) ion. Thus, cleavage patterns can provide information on spatial organization of the polypeptide chain. We propose that highly conserved regions of the α subunit, within the minor and major cytoplasmic loops, interact in the E2 or E2(Rb) conformations but move apart in the E1 or E1Na conformations. We discuss implications of domain interactions for the energy transduction mechanism. Fe-catalyzed cleavages may be applicable to other P-type pumps or membrane proteins.