974 resultados para Subsurface Flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water as a low-cost tertiary wastewater treatment for rural locations. Experience has shown that clogging is a major operational problem that reduces HSSF TW lifetime. Clogging is caused by an accumulation of secondary wastewater solids from upstream processes and decomposing leaf litter. Clogging occurs as a sludge layer where wastewater is loaded on the surface of the bed at the inlet. Severn Trent systems receive relatively high hydraulic loading rates, which causes overland flow and reduces the ability to mineralise surface sludge accumulations. A novel apparatus and method, the Aston Permeameter, was created to measure hydraulic conductivity in situ. Accuracy is ±30 %, which was considered adequate given that conductivity in clogged systems varies by several orders of magnitude. The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in the UK and the US. The minimum conductivity measured was 0.03 m/d at Fenny Compton (compared with 5,000 m/d clean conductivity), which was caused by an accumulation of construction fines in one part of the bed. Most systems displayed a 2 to 3 order of magnitude variation in conductivity in each dimension. Statistically significant transverse variations in conductivity were found in 70% of the systems. Clogging at the inlet and outlet was generally highest where flow enters the influent distribution and exits the effluent collection system, respectively. Surface conductivity was lower in systems with dense vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge mineralisation. An equation was derived to describe how the water table profile is influenced by overland flow, spatial variations in conductivity and clogging. The equation is calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent loss of porosity that would reproduce measured conductivity according to the Kozeny-Carman Equation. The CF varies from 0 for ideal conditions to 1 for completely clogged conditions. Minimum CF was 0.54 for a system that had recently been refurbished, which represents the deviation from ideal conditions due to characteristics of non-ideal media such as particle size distribution and morphology. Maximum CF was 0.90 for a 15 year old system that exhibited sludge accumulation and overland flow across the majority of the bed. A Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and hydrodynamics vary as CF increases. It was found that as CF increases from 0.55 to 0.65 the subsurface wetted area increases, which causes mean hydraulic residence time to increase from 0.16 days to 0.18 days. As CF increases from 0.65 to 0.90, the extent of overland flow increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and reduces mean residence time to 0.08 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clogging is the main operational problem associated with horizontal subsurface flow constructed wetlands (HSSF CWs). The measurement of saturated hydraulic conductivity has proven to be a suitable technique to assess clogging within HSSF CWs. The vertical and horizontal distribution of hydraulic conductivity was assessed in two full-scale HSSF CWs by using two different in situ permeameter methods (falling head (FH) and constant head (CH) methods). Horizontal hydraulic conductivity profiles showed that both methods are correlated by a power function (FH= CH 0.7821, r 2=0.76) within the recorded range of hydraulic conductivities (0-70 m/day). However, the FH method provided lower values of hydraulic conductivity than the CH method (one to three times lower). Despite discrepancies between the magnitudes of reported readings, the relative distribution of clogging obtained via both methods was similar. Therefore, both methods are useful when exploring the general distribution of clogging and, specially, the assessment of clogged areas originated from preferential flow paths within full-scale HSSF CWs. Discrepancy between methods (either in magnitude and pattern) aroused from the vertical hydraulic conductivity profiles under highly clogged conditions. It is believed this can be attributed to procedural differences between the methods, such as the method of permeameter insertion (twisting versus hammering). Results from both methods suggest that clogging develops along the shortest distance between water input and output. Results also evidence that the design and maintenance of inlet distributors and outlet collectors appear to have a great influence on the pattern of clogging, and hence the asset lifetime of HSSF CWs. © Springer Science+Business Media B.V. 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clogging is a major operational and maintenance issue associated with the use of subsurface flow wetlands for wastewater treatment, and can ultimately limit the lifetime of the system. This review considers over two decades of accumulated knowledge regarding clogging in both vertical and horizontal subsurface flow treatment wetlands. The various physical, chemical and biological factors responsible for clogging are identified and discussed. The occurrence of clogging is placed into the context of various design and operational parameters such as wastewater characteristics, upstream treatment processes, intermittent or continuous operation, influent distribution, and media type. This information is then used to describe how clogging develops within, and subsequently impacts, common variants of subsurface flow treatment wetland typically used in the U.S., U.K., France and Germany. Comparison of these systems emphasized that both hydraulic loading rate and solids loading rate need to be considered when designing systems to operate robustly, i.e. hydraulic overloading makes horizontal-flow tertiary treatment systems in the U.K. more susceptible to clogging problems than vertical-flow primary treatment systems in France. Future research should focus on elucidating the underlying mechanisms of clogging as they relate to the design, operation, and maintenance of subsurface flow treatment wetlands. © 2010 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Finite Element Analysis (FEA) model is used to explore the relationship between clogging and hydraulics that occurs in Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) in the United Kingdom (UK). Clogging is assumed to be caused by particle transport and an existing single collector efficiency model is implemented to describe this behaviour. The flow model was validated against HSSF TW survey results obtained from the literature. The model successfully simulated the influence of overland flow on hydrodynamics, and the interaction between vertical flow through the low permeability surface layer and the horizontal flow of the saturated water table. The clogging model described the development of clogging within the system but under-predicted the extent of clogging which occurred over 15 years. This is because important clogging mechanisms were not considered by the model, such as biomass growth and vegetation establishment. The model showed the usefulness of FEA for linking hydraulic and clogging phenomenon in HSSF TWs and could be extended to include treatment processes. © 2011 Springer Science+Business Media B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The driving force behind this study has been the need to develop and apply methods for investigating the hydrogeochemical processes of significance to water management and artificial groundwater recharge. Isotope partitioning of elements in the course of physicochemical processes produces isotopic variations to their natural reservoirs. Tracer property of the stable isotope abundances of oxygen, hydrogen and carbon has been applied to investigate hydrogeological processes in Finland. The work described here has initiated the use of stable isotope methods to achieve a better understanding of these processes in the shallow glacigenic formations of Finland. In addition, the regional precipitation and groundwater records will supplement the data of global precipitation, but as importantly, provide primary background data for hydrological studies. The isotopic composition of oxygen and hydrogen in Finnish groundwaters and atmospheric precipitation was determined in water samples collected during 1995 2005. Prior to this study, no detailed records existed on the spatial or annual variability of the isotopic composition of precipitation or groundwaters in Finland. Groundwaters and precipitation in Finland display a distinct spatial distribution of the isotopic ratios of oxygen and hydrogen. The depletion of the heavier isotopes as a function of increasing latitude is closely related to the local mean surface temperature. No significant differences were observed between the mean annual isotope ratios of oxygen and hydrogen in precipitation and those in local groundwaters. These results suggest that the link between the spatial variability in the isotopic composition of precipitation and local temperature is preserved in groundwaters. Artificial groundwater recharge to glaciogenic sedimentary formations offers many possibilities to apply the isotopic ratios of oxygen, hydrogen and carbon as natural isotopic tracers. In this study the systematics of dissolved carbon have been investigated in two geochemically different glacigenic groundwater formations: a typical esker aquifer at Tuusula, in southern Finland and a carbonate-bearing aquifer with a complex internal structure at Virttaankangas, in southwest Finland. Reducing the concentration of dissolved organic carbon (DOC) in water is a primary challenge in the process of artificial groundwater recharge. The carbon isotope method was used to as a tool to trace the role of redox processes in the decomposition of DOC. At the Tuusula site, artificial recharge leads to a significant decrease in the organic matter content of the infiltrated water. In total, 81% of the initial DOC present in the infiltrated water was removed in three successive stages of subsurface processes. Three distinct processes in the reduction of the DOC content were traced: The decomposition of dissolved organic carbon in the first stage of subsurface flow appeared to be the most significant part in DOC removal, whereas further decrease in DOC has been attributed to adsorption and finally to dilution with local groundwater. Here, isotope methods were used for the first time to quantify the processes of DOC removal in an artificial groundwater recharge. Groundwaters in the Virttaankangas aquifer are characterized by high pH values exceeding 9, which are exceptional for shallow aquifers on glaciated crystalline bedrock. The Virttaankangas sediments were discovered to contain trace amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. Understanding the origin of the unusual geochemistry of the Virttaankangas groundwaters is an important issue for constraining the operation of the future artificial groundwater plant. The isotope ratios of oxygen and carbon in sedimentary carbonate minerals have been successfully applied to constrain the origin of the dispersed calcite in the Virttaankangas sediments. The isotopic and chemical characteristics of the groundwater in the distinct units of aquifer were observed to vary depending on the aquifer mineralogy, groundwater residence time and the openness of the system to soil CO2. The high pH values of > 9 have been related to dissolution of calcite into groundwater under closed or nearly closed system conditions relative to soil CO2, at a low partial pressure of CO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente trabalho tem o objetivo de avaliar a metodologia de construção, de plantio, de manutenção, de operação e a eficiência de um sistema de tratamento por wetland construído como etapa de polimento da Estação de Tratamento de Lixiviado (ETC) de Aterro já encerrado de Resíduos Sólidos Urbanos na Região Metropolitana do Rio de Janeiro. Parte do efluente tratado por lodos ativados na ETC foi direcionado e tratado no wetland construído. Foi escolhido o projeto de Fluxo Horizontal Subsuperficial e a vegetação selecionada foi a taboa (Typha latifolia) que é nativa da área do aterro. Em média, foram feitas três amostragens mensais do afluente e do efluente do wetland, de maio a outubro de 2013. A eficiência do sistema foi avaliada por meio de parâmetros físico-químicos e de parâmetros coletivos específicos. A eficiência de remoção de Demanda Química de Oxigênio (DQO) foi de 60%, nitrogênio amoniacal de 67%, nitrito de 72% e nitrato de 57%. Outro parâmetro avaliado foi a toxicidade aguda, foram utilizados os organismos teste Danio rerio (peixe), a Daphnia similis (microcrustáceo) e a Aliivibrio fischeri (bactéria luminescente). Durante o período foram coletados diariamente as vazões de entrada e saída, a condutividade elétrica e o índice pluviométrico. Os resultados mostraram que o uso de wetland como etapa de polimento pode ser uma alternativa para o tratamento de lixiviado.