999 resultados para Substrate competition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally accepted that, in vertebrates, omega-3 (n-3) and omega-6 (n-6) poly-unsaturated fatty acids (PUFA) compete for ?-6 desaturase enzyme in order to be bioconverted into long-chain PUFA (LC-PUFA). However, recent studies into teleost fatty acid metabolism suggest that these metabolic processes may not conform entirely to what has been previously observed in mammals and other animal models. Recent work on rainbow trout has led us to question specifically if linoleic acid (LA, 18:2n-6) and ?-linolenic acid (ALA, 18:3n-3) (?-6 desaturase substrates) are in direct competition for access to ?-6 desaturase. Two experimental diets were formulated with fixed levels of ALA, while LA levels were varied (high and low) to examine if increased availability of LA would result in decreased bioconversion of ALA to its LC-PUFA products through substrate competition. No significant difference in ALA metabolism towards n-3 LC-PUFA was exhibited between diets while significant differences were observed in LA metabolism towards n-6 LC-PUFA. These results are evidence for minor if any competition between substrates for ?-6 desaturase, suggesting that, paradoxically, the activity of ?-6 desaturase on n-3 and n-6 substrates is independent. These results call for a paradigm shift in the way we approach teleost fatty acid metabolism. The findings are also important with regard to diet formulation in the aquaculture industry as they indicate that there should be no concern for possible substrate competition between 18:3n-3 and 18:2n-6, when aiming at increased n-3 LC-PUFA bioconversion in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The implementation of alternative lipid sources for use in aquaculture is of considerable interest globally. However, the possible benefit of using stearidonic acid (SDA)–rich fish oil (FO) alternatives has led to scientific confusion. Two hundred and forty rainbow trout (Oncorhynchus mykiss) were fed 1 of 4 diets (3 replicate tanks/treatment) containing either FO, linseed oil (LO), echium oil, or mixed vegetable oil (72% LO, 23% sunflower oil, and 6% canola oil) as the dietary lipid source (16.5%) for 73 d to investigate the competition and long-chain PUFA (LC-PUFA) biosynthesis between the fatty acid substrates α-linolenic acid (ALA) and SDA. SDA was more efficiently bioconverted to LC-PUFA compared with ALA. However, when the dietary lipid sources were directly compared, the increased provision of C18 PUFA within the LO diet resulted in no significant differences in (n-3) LC-PUFA content compared with fish fed the other diets. This study therefore shows that, rather than the previously speculated substrate competition, the limiting process in the apparent in vivo (n-3) LC-PUFA biosynthesis appears to be substrate availability. Rainbow trout fed the SDA- and ALA-rich dietary lipid sources subsequently had similar significant reductions in (n-3) LC-PUFA compared with fish fed the FO diet, therefore providing no additional dietary benefit on (n-3) LC-PUFA concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional views on the metabolic derangements underlying insulin resistance and Type 2 diabetes have been largely “glucocentric” in nature, focusing on the hyperglycemic and/or hyperinsulinemic states that result from impaired glucose tolerance. But in addition to glucose intolerance, there is a coordinated breakdown in lipid dynamics in individuals with insulin resistance, manifested by elevated levels of circulating free fatty acids, diminished rates of lipid oxidation, and excess lipid accumulation in skeletal muscle and/or liver. This review examines the premise that an oversupply and/or accumulation of lipid directly inhibits insulin action on glucose metabolism via changes at the level of substrate competition, enzyme regulation, intracellular signaling, and/or gene transcription. If a breakdown in lipid dynamics is causal in the development of insulin resistance (rather than a coincidental feature resulting from it), it should be possible to demonstrate that interventions that improve lipid homeostasis cause reciprocal changes in insulin sensitivity. Accordingly, the efficacy of aerobic endurance training in human subjects in mediating the association between deranged lipid metabolism and insulin resistance will be examined. It will be demonstrated that aerobic exercise training is a potent and effective primary intervention strategy in the prevention and treatment of individuals with insulin resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria ( Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides) from alcoholic fermentation, through the method of minimum inhibitory concentration ( MIC), as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis ( 10 ppm) and Leuconostoc mesenteroides ( 50 ppm) than for Lactobacillus fermentum ( 75 ppm) and Lactobacillus plantarum ( 125 ppm). Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran (R) ( recommended dosage for fermentation tanks), exception for B. subtilis, which could not be controlled at this Kamoran (R) dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies ( dispersed cells) seemed to be more sensitive than wrinkled yeast colonies ( clustered cells/pseudohyphal growth), both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Undoped GaN epilayer on c-face (0 0 0 1) sapphire substrate has been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor. Photoluminescence (PL) as a function of temperature and excitation intensity have been systematically studied, and the competition between near band gap ultraviolet (UV) and defect-related yellow luminescence (YL) has been extensively investigated, It is revealed that the ratio of the UV-to-YL peak intensities depends strongly on the excitation intensity and the measurement temperature. The obtained results have been analyzed in comparison with the theoretical predications based on a bimolecular model. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the lamellar orientation in thin films of a model diblock copolymer, symmetric poly(styrene)-b-poly(L-lactide) (PS-PLLA), in the melt state on supported silicon wafer surface. In this system, while the PLLA block prefers to wet the polymer/substrate interface, the polymer/air as well as polymer/polymer interface is neutral for both blocks due to the similar surface energies of PS and PLLA in melt state. Our results demonstrate that the interplay of the interfaces during phase separation results in a series of structures before approaching the equilibrium state. Lamellar orientation of thin films with different initial film thicknesses at different annealing stages has been investigated using atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that in the early stage (annealing time t < 10 min), the polymer/substrate interface dominates the structure evolution, leading to a parallel lamellar structure with holes or islands formed depending on the initial film thickness. Later on, the neutral air interface becomes important and leads to a transition of lamellar orientation from parallel to perpendicular. It is interesting to see that for films with thickness h > 2L, where L is the bulk lamellar period, the lamellar orientation transition can occur independently in different parallel lamellar domains due to the neutrality of polymer/polymer interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual fitness and the structure of marine communities are strongly affected by spatial competition. Among the most common space holders are the colonial ascidians, which have the ability to monopolize large areas of hard substrate, overgrowing most other competitors. The effects of competition on colony growth and on gonad production of the ascidian Didemnum perlucidum were studied in southeastern Brazil by experimentally removing surrounding competitors. Colonies of D, perlucidum competing for space exhibited a growth rate 9 times less than that of colonies that were competitor free. Among the colonies subject to competition, growth rates were unrelated to the percentage of colony border that was free of competitors. However, the identity of the competitor was important in the outcome of border contacts. At the beginning of the experiment, most border encounters of D. perlucidum were with solitary organisms, which in most cases were overgrown. These were progressively replaced by colonial ascidians and bryozoans, resulting mostly in stand-off interactions. Besides reducing asexual growth, spatial competition also affected female gonad production. Colonies free of competitors had a significantly higher proportion of zooids with ovaries. Thus, our findings show that spatial competition reduces both ascidian colony size and gonad production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pioneering work by J. Stan Cobb described how habitat architecture and body size scaling affect shelter-related behavior of American lobsters. Subsequent research suggested that shelter availability and competition could set local carrying capacity and demographics for this species. To determine how shelter spacing affects population density, the intensity of intraspecific competition and the distribution of body size for this species, I deployed sets of 10 identically sized artificial shelters spaced at distances of 2.5, 0.5, 1.0, 1.5 and 2.0 meters on otherwise featureless substrate at 10 m depth in mid-coast Maine, U.S.A. Five sets had two parallel strings of five opposing shelters and an additional linear string set 2 to apart without opposing shelters was the most widely separated treatment. Shelters spaced I m apart and closer had higher lobster population densities, more intraspecific competition and higher proportions of empty shelters. Surprisingly, lobsters there were also significantly smaller, declining from 62.7 mm to 50.9 on the carapace (CL) for 2 to linear to 0.25 m spaced shelters, respectively. Nearly all 932 lobsters measured in this study were juvenile (< 90 mm CL) and preharvestable (< 83 mm CL) sized, so mate selection and fishing effects were unlikely. At the scale of the experiment, larger lobsters leave or avoid areas of high lobster population density and intense competition for areas of low population density and relaxed competition (called "demographic diffusion"). Scuba surveys in coastal zones found lobster population densities scale with shelter densities and were highest in boulder habitat where, like the experiment, more than half the shelters were vacant. Fisheries independent scuba and trawl surveys in Maine's shallow coastal zone repeatedly recorded declines of preharvestable, lobsters larger than 60 turn CL in size and increases of those sizes offshore and in deep water. It is possible that this demographic diffusion is driven by behaviors associated with intraspecific shelter competition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae Mod5 protein catalyzes isopentenylation of A to i6A on tRNAs in the nucleus, cytosol, and mitochondria. The substrate for Mod5p, dimethylallyl pyrophosphate, is also a substrate for Erg20p that catalyzes an essential step in sterol biosynthesis. Changing the distribution of Mod5p so that less Mod5p is present in the cytosol decreases i6A on cytosolic tRNAs and alters tRNA-mediated nonsense suppression. We devised a colony color/growth assay to assess tRNA-mediated nonsense suppression and used it to search for genes, which, when overexpressed, affect nonsense suppression. We identified SAL6, TEF4, and YDL219w, all of which likely affect nonsense suppression via alteration of the protein synthesis machinery. We also identified ARC1, whose product interacts with aminoacyl synthetases. Interestingly, we identified ERG20. Midwestern analysis showed that yeast cells overproducing Erg20p have reduced levels of i6A on tRNAs. Thus, Erg20p appears to affect nonsense suppression by competing with Mod5p for substrate. Identification of ERG20 reveals that yeast have a limited pool of dimethylallyl pyrophosphate. It also demonstrates that disrupting the balance between enzymes that use dimethylallyl pyrophosphate as substrate affects translation.