232 resultados para Submersed macrophyte
Resumo:
A shift in plant communities of the Water Conservation Areas (WCAs) within the Everglades has been linked to changes in hydrology and high levels of nutrient loading from surrounding agicultural areas. This has resulted in the encroachment of dense cattail stands (Typha domingensis) into areas that had previously been a ridge and slough landscape populated primarily by native sawgrass (Cladium jamaicense). In order to study ecological management solutions in this area, WCA-2A was broken into study plots; several of which became open water areas through the application of herbicide and burning regimens. The open water areas allowed for Chara spp (a submersed algal species) to replace Typha domingensis as the dominant macrophyte. This study investigated the polymer and ionic profiles of Chara spp, Typha domingensis and Cladium jamaicense and their contributions to detrital flocculent (floc) in the study plots where they are the dominant macrophytes. Floc is not only an important food source for aquatic species; it also supports many algal, fungal and bacterial communities. Data gathered in this study indicated that the floc sample from a phosphorus enriched open water study plot (EO1) where Chara spp was the dominant macrophyte may contain cell wall polymers from sources other than Chara spp (most likely Typha domingensis), while the chemical and polymeric profile of the floc of the study plot where Typha domingensis is the dominant macrophyte (EC1) suggests that the floc layer has contributions from algal sources as well as Typha domingensis. Additionally, monoclonal antibodies to Arabinoglalactan protein (AGP) and (1,4)-β-D galactan were identified as possible biomarkers for distinguishing algal dominated floc layers from layers dominated by emergent vegetation. Calcium labeling could be a useful tool for this as well because of the high amount of Ca2+ associated with Chara spp cell walls. When looking into the soluble phosphorus content of the macrophytes and paired floc samples of WCA-2A, it was found that Chara spp may be contributing a greater amount of Ca-bound phosphorus to floc layers where it is the dominant macrophyte when compared to floc layers from study plots dominated by emergent macrophytes. Floc layers also appear to be acting as a nutrient sink for soluble phosphorus. The findings of this study support the overall hypothesis that the shift from native emergent macrophyte communities to submersed macrophyte communities in study sites of the northern Everglades is affecting the polymeric/chemical profile and ionic content of detrital floc layers. The effects of this shift may contribute to changes in complex flocculent community dynamics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.
Resumo:
Submersed vegetation is a common feature in about 70% Pyrene an high mountain (>1500 m a.s.l.) lakes. Isoetids and soft-water elodeids are common elements of this underw ater flora and can form distinct vegetation units (i.e. patches of vegetation dominated by different species) within complex mosaics of vegetation in shallow waters (<7 m). Since is oetids exert a strong influence on sediment biogeochemistry due to high radial oxygen loss, we examined the small scale characteristics of the lake environment (water and sediment) associated to vegetation patches in order to ascertain potential functional differences among them. To do so, we characterised the species composition and biomass of the main vegetation units from 11 lakes, defined plant communities based on biomass data, and then related each community with sediment properties (redox and dissolved nutrient concentration in the pore water) and water nutrient concentration within plant canopy. We also characterised lake water and sediment in areas without vegetation as a reference. A total of twenty-one vegetation units were identified, ranging from one to five per lake. A cluster analysis on biomass species composition suggested seven different macrophyte communities that were named after the most dominant species:Nitella sp.,Potamogeton praelongus, Myriophyllum alterniflorum, Sparganium angustifolium , Isoetes echinospora,Isoetes lacustris and Carex rostrata . Coupling between macrophyte communities and their immediate environment (overlying water and sediment) was manifested mainly as variation in sediment redox conditions and the dominant form of inorganic nitrogen in pore-water. These effects depended on the specific compositi on of the community, and on the allocation between above- and belowground biomass, and could be predicted with a model relating the average and standard deviation of sediment redox potential from 0 down to -20 cm, across macrophyte communities. Differences in pore-water total dissolved phosphorus were related to the trophic state of the lakes. There was no correlation between sediment and water column dissolved nutrients. However, nitrate concentrations tended to be lower in the water overlaying isoetid communities, in apparent contradiction to the patterns of dissolved nitrates in the pore-water. These tendencies were robust even when comparing the water over laying communities within the same lake, thus pointing towards a potential effect of isoetids in reducing dissolved nitrogen in the lakes.
Resumo:
Between 1991 and 1995 aquatic macrophyte composition was observed in the lower part of the reservoir of the hydroelectric power plant of Balbina (Amazonas, Brazil). After closure of the dam in 1987, vegetation cover - mostly Eichhornia crassipes - was high, but was not quantified. After 1990 it declined rapidly with a characteristic succession pattern: Eichhornia ® Vincularia + Cyperaceae ® Salvinia. The Cyperaceae, and many other less dominant species, were mostly associated with drift wood, produced by the decomposing, emergent forest. Comparison of the chemical data of the Uatumã river before the construction of the dam (1983) with those of later years (1989 - 1995) suggests that the succession was the result of a relatively mild and short period of eutrophication, followed by declining nutrient levels. Annual variation of water levels, followed by aquatic and terrestrial decomposition of the marginal vegetation, may allow for the maintenance of relatively productive vegetation belts along the shore lines of islands and inundated stream valleys.
Resumo:
Flow structures above vegetation canopies have received much attention within terrestrial and aquatic literature. This research has led to a good process understanding of mean and turbulent canopy flow structure. However, much of this research has focused on rigid or semi-rigid vegetation with relatively simple morphology. Aquatic macrophytes differ from this form, exhibiting more complex morphologies, predominantly horizontal posture in the flow and a different force balance. While some recent studies have investigated such canopies, there is still the need to examine the relevance and applicability of general canopy layer theory to these types of vegetation. Here, we report on a range of numerical experiments, using both semi-rigid and highly flexible canopies. The results for the semi-rigid canopies support existing canopy layer theory. However, for the highly flexible vegetation, the flow pattern is much more complex and suggests that a new canopy model may be required.
Resumo:
The potential of three aquatic macrophytes, Azoll caroliniana, Salvinia minima and Lemna gibba, was evaluated in this work aimed at selection of plants to be used in remediation of environments contaminated by arsenic (As). The experiments were carried out in a greenhouse during six days in pots containing Hoagland solution (¼ ionic strength) at As concentrations of 0.5; 2.5 and 5.0 mg L-1. The three species showed greater As accumulation as the concentration of the metalloid in solution increased. However, a reduction was detected in fresh and dry mass gain when the plants were exposed to high As concentrations. The macrophytes showed differences in efficiency of removal of As in solution. A. caroliniana, S. minima and L. gibba accumulated, on average, 0.130; 0.200; and 1.397 mg mDM-1, respectively, when exposed to 5.0 mg L-1 of As. The macrophytes absorbed a greater quantity of As in solution with low phosphate content. The greater As concentration in L. gibba tissues lowered the chlorophyll and carotenoid contents as shown by the high chlorosis incidence. Lemna gibba also exhibited a decrease in leaf size, with the total chlorophyll and carotenoid synthesis not being affected by As in A. caroliniana. This species exhibited purplish leaves with high concentration of anthocyanin, whose presence suggested association to phosphate deficiency. Marginal necrosis occurred on S. minima floating leaves, with the released daughter-plants not showing any visual symptoms during the treatment. The percentage of As removed from the solution decreased when the plants were exposed to high concentrations of the pollutant. Among the three species studied, only L. gibba could be considered an As hyper-accumulator. The use of this plant species for remediation of aquatic environments was shown to be limited and requires further investigation.
Resumo:
This study aimed to evaluate feed preference and control efficacy of grass carp (Ctenopharyngodon idella) on the aquatic macrophytes Ceratophyllum demersum, Egeria densa and Egeria najas. An experiment was carried out at mesocosms conditions with 2,000 liters capacity and water residence time of 2.8 days. C. demersum, E. densa e E. najas biomasses were offered individually with sixty g and coupled in similar quantities of 30 g of each species, evaluated during 81 days, envolving 6 treatments. (1 - C. demersum, 2 - E. najas, 3 -E. densa, 4 - C. demersum + E. najas, 5 - C. demersum + E. densa and 6 - E. najas + E. densa). When offered individually, E. najas and C. demersum presented the same predation rate by grass carp, which was higher than E. densa predation rate. When plants were tested in pairs, the order of feed preference was C. demersum > E. najas > E. densa. E. najas and C. demersum percentage control ranged from 73 to 83%. No relation between biomass consumption and grass carp body weight gain was observed, probably due to differences in nutritional quality among macrophyte species according to fish necessities. Therefore, it is concluded that the use of grass carp is one excellent technique to control submersed macrophytes in Brazil.
Resumo:
the aims of this study were to determine imazapyr efficacy for floating macrophyte control and ecotoxicology for non-target organisms. For the floating macrophyte control efficacy tests were used the doses of 0,5; 1,0; 2,0; 2,5; 3,0; 3,5 and 4,0 L ha-1 and a control with 10 replicates. The acute toxicology for non-target organisms was estimated by lethal concentration 50% (LC50 and EC50). The floating macrophyte control efficacy was over 90%. Imazapyr was classified as moderately toxic for the following biomarkers: L. minor, H. eques, B. rerio, P. caudimaculatus, P. canaliculata, and P. mesopotamicus and lightly toxic for A. caroliniana. Thus, imazapyr herbicide is a tool with great potential to be used on floating macrophyte control (E. crassipes, P. stratiotes e S. molesta) in Brazil and this practice can be evaluated by the use of application biomarkers.
Resumo:
In the current study, the duckweed aquatic macrophyte Spirodela polyrrhiza was employed for assessing the toxicity of two wetlands in the Eloor industrial estate, Ernakulam district, Kerala, South India. The assessments were made according to OECD guidelines for testing (2006). The studies involve study of growth parameters, Growth Index, Biomass and changes in productivity. The water samples were collected from two different wetland sites at the same time. The spirodela plants were introduced into several dilutions of wetland water samples. The parameters were measured after 7 days of exposure. All samples except control affected all parameters. The results of this study emphasize the significance of duckweeds as standard and reliable testing material for biological parameters in polluted aquatic ecosystem
Resumo:
One of the objectives of the current investigation was to evaluate the effectiveness of Spirodela polyrhiza to remove heavy metals and other contaminants from the water samples collected from wetland sites of Eloor and Kannamaly under controlled conditions .The results obtained from the current study suggest that the test material S. polyrrhiza should be used in the biomonitoring and phytoremediation of municipal, agricultural and industrial effluents because of their simplicity, sensitivity and cost-effectiveness. The study throws light on the potential of this plant which can be used as an assessment tool in two diverse wetland in Ernakulum district. The results show the usefulness of combining physicochemical analysis with bioassays as such approach ensures better understanding of the toxicity of chemical pollutants and their influence on plant health. The results shows the suitability of Spirodela plant for surface water quality assessment as all selected parameters showed consistency with respect to water samples collected over a 3-monitoring periods. Similarly the relationship between the change in exposure period (2, 4 and 8 days) with the parameters were also studied in detail. Spirodela are consistent test material as they are homogeneous plant material; due to predominantly vegetative reproduction. New fronds are formed by clonal propagation thus, producing a population of genetically homogeneous plants. The result is small variability between treated individuals. It has been observed that phytoremediation of water samples collected from Eloor and Kannamaly using the floating plant system is a predominant method which is economic to construct, requires little maintenance and eco friendly.
Resumo:
The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os rios e lagos de várzea da província petrolífera de Urucu, na Amazônia Central, são amplamente colonizados por macrófitas aquáticas, que podem ser afetadas por acidentes durante a exploração e o transporte de petróleo. Entre as macrófitas, a espécie flutuante Eichhornia crassipes (aguapé) ocorre abundantemente na região; OBJETIVO: O objetivo desse estudo foi verificar o efeito de diferentes dosagens do petróleo de Urucu (0; 0,5; 1,5 e 3,0 L.m-2) na biomassa viva e morta de E. crassipes e em algumas características físicas e químicas da água; MÉTODOS: O experimento teve oitenta e quatro dias de duração. A cada sete dias foi determinada a biomassa (viva e morta) de E. crassipes e os valores de temperatura, pH, condutividade elétrica e oxigênio dissolvido da água; RESULTADOS: A dosagem de 0,5 L.m-2 foi suficiente para causar mortalidade parcial (48%) em E. crassipes após trinta e cinco dias de exposição ao petróleo. A dosagem de 3,0 L.m-2 causou mortalidade total (100%) em E. crassipes em oitenta e quatro dias de exposição. A decomposição do petróleo e da biomassa morta de E. crassipes provocam a redução do oxigênio dissolvido e do pH, e aumento da condutividade elétrica e de fósforo total na água; CONCLUSÕES: Nós concluímos que um derramamento de petróleo pode provocar mortalidade total em uma população de uma espécie de macrófita, mas não em uma outra. Isto pode alterar a diversidade de espécies de macrófitas na região impactada. No caso de Eichhornia crassipes e Pistia stratiotes, um derramamento de petróleo de Urucu pode favorecer E. crassipes, a espécie menos sensível ao petróleo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)