936 resultados para Submerged arc
Resumo:
Postweld heat treatment (PWHT) is frequently applied to steel pressure vessels, following the requirements of the ASME code (section VIII), which establishes the parameters of the PWHT based on the thickness and chemical composition of the welded section. This work shows the results of an analysis undertaken on a sample of ASTM A537 C1 steel subjected to qualifying welding procedure tests including PWHT (650 degreesC/5 h), the results obtained showed that this PWHT practice promoted a reduction in the mechanical properties of the base metal and the heat-affected zone (HAZ).
Resumo:
The literature available on submerged arc welding of copper and copper alloys, submerged arc welding with strip electrodes, and related areas has been reviewed in depth. Copper cladding of mild steel substrates by deposition from strip electrodes using the submerged arc welding process has been successful. A wide range of parameters, and several fluxes have been investigated. The range of deposit compositions is 66.4% Cu to 95.7% Cu. The weld beads have been metallographically examined using optical and electron microscopy. Equating weld beads to a thermodynamical equivalent of iron has proven to be an accurate and simplified means of handling quantitative data for multicomponent welds. Empirical equations derived using theoretical considerations characterize the weld bead dimensions as functions of the welding parameters and hence composition. The melting rate for strip electrodes is dependent upon the current-voltage product. Weld nugget size is increased by increased thermal transfer efficiencies resulting from stirring which is current dependent. The presence of Fe2O3 in a flux has been demonstrated to diminish electrode melting rate and drastically increase penetration, making flux choice the prime consideration in cladding operations. A theoretical model for welding with strip electrodes and the submerged arc process is presented.
Resumo:
O maior objetivo deste trabalho foi estudar os efeitos da composição dos fluxos para arco submerso sobre algumas importantes características de um metal de solda ferrítico, como composição química, microestrutura, propriedades mecânicas e geometria do cordão. Para realizar tal pesquisa, vinte oito fluxos aglomerados foram elaborados de compostos de pureza comercial e utilizados em soldagens ao aorco submerso, mantendo constante todas as demais condições de soldagem. Houve uma notável influência da composição química e do índice de basicidade dos fluxos sobre os níveis de oxig~enio, silício e manganês do metal de solda. Um modelo termodinâmico, baseado no conceito de potencial de oxigênio, foi proposto para explicar as reações gás-meta-escória ocorrendo durante a soldagem. Este modelo mostrou-se usável para as reações entre silício, oxigênio e carbono, permitindo um melhor entendimento das mesmas. A composição química do metal de solda pôde ser relacionada a sua microestrutura, através de metalografia quantitativa. Foi observado que oxigênio, silício, manganês e titânio têm grande influência sobre ela. A fase mais tenaz encontrada foi a ferrita acicular. A respeito da geometria do cordão, a sílica mostrou o efeito mais forte, com os outros compostos influenciando somente o acabamento do cordão soldado.
Resumo:
The conventional radiographic technique using industrial radiographic films is with the days finishing. The Digital Radiography is taking place in several sectors, e.g., the medical, aerospace, security, automotive, etc. In addition to representing a technological trend, it has been demonstrated that digital radiography offers a series of benefits in terms of productivity, sensitivity, environmental aspects, image treatment tools, cost reduction, etc. If one weld seam to be inspected is from a serried product, as example a pipe, the best option to be implemented is the Flat Panel Detector with this equipment is possible to reduce the obtaining digital radiographic images in place of films and reducing the inspection cycle time due to its high degree of automation. In the experiments described in this paper this new technique was tested and the results were compared with those obtained by the conventional radiography. The welded specimens were prepared using the submerged-arc welding process and small artificial cracks of the most varied dimensions, present in the specimens, were used to establish a comparison of the sensitivities presented by the techniques employed After conducting several experiments, the digital method presented the highest sensitivity to the wire-type Image Quality Indicator (IQI) and in the detection of small defects, leading to the conclusion that the use of digital radiography using the flat-panel detector offers advantages over the conventional technique [1, 2]. This work was carried out based on the API 5L Edition 2004 [3] and ISO 3183 Edition 2007 [4] specifications.
Resumo:
Conventional radiography, using industrial radiographic films, has its days numbered. Digital radiography, recently, has taken its place in various segments of products and services, such as medicine, aerospace, security, automotive, etc. As well as the technological trend, the digital technique has brought proven benefits in terms of productivity, sensitivity, the environment, tools for image treatment, cost reductions, etc. If the weld to be inspected is on a serried product, such as, for example, a pipe, the best option for the use of digital radiography is the plane detector, since its use can reduce the length of the inspection cycle due to its high degree of automation. This work tested welded joints produced with the submerged arc process, which were specially prepared in such a way that it shows small artificial cracks, which served as the basis forcomparing the sensitivity levels of the techniques involved. After carrying out the various experiments, the digital meth odshowed the highest sensitivity for the image quality indicator (IQI) of the wire and also in terms of detecting small discontinuities, indicating that the use of digital radiography using the plane detector had advantages over the conventional technique (Moreira et al. Digital radiography, the use of plane detectors for the inspection of welds in oil pipes and gas pipes.9th COTEQ and XXV National Testing Congress for Non Destructive Testing and Inspection; Salvador, Bahia, Brazil and Bavendiek et al. New digital radiography procedure exceeds film sensitivity considerably in aerospace applications. ECNDT; 2006; Berlin). The works were carried out on the basis of the specifications for oil and gas pipelines, API 5L 2004 edition (American Petroleum Institute. API 5L: specification for line pipe. 4th ed. p. 155; 2004) and ISO 3183 2007 edition (International Organization for Standardization, ISO 3183. Petroleum and gas industries - steel pipes for pi pelines transportation systems. p. 143; 2007). © 2010 Taylor & Francis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Aumento da velocidade de soldagem para processo de arco submerso em juntas de um tubo de aço API X70
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This research project focused primarily on assessing the impact toughness of the weld and the base material of a steel pipe API 5L X70 submerged arc welded, used to conduct remote oil and gas (linepipes). The analysis followed strictly the Specification for Line Pipe - API 5L Standard, regarding the removal of the specimens of regions-of-proof-long section of the pipe, at 90o and 180o from the welded joint, and mechanical properties of toughness and Charpy-V, both the joint welded as the base material. Specimens of steel tube supplied by Tenaris Confab-SA were sized for tensile and Charpy-V, according to ASTM E 8M and ASTM E23, respectively. The result obtained showed that the API X70 steel tube has high Charpy-V toughness, near to each other at both 90o and 180o from the welded joint of the tube, and both higher than the weld metal. Microstructural and microhardness analysis complemented the present study
Resumo:
Because the high consumption of welded pipe for exploration and conduction oil and gas, optimization of manufacturing processes is necessary to obtain better productivity, efficiency and cost reduction. The objective of this study is to analyze the forms of heat transfer during the welding of pipes using longitudinal submerged arc process them to propose a model for the temperature distribution in the welded region. For this analysis are addressed as the heat transfer modes operate in the specified welding process and the necessary considerations for the mathematical model were obtained. The calculations were performed and the simulations needed to obtain the temperature distribution in the tube were carried out. Therefore, the practice was satisfactory and the results showed a range of temperatures along the pipe for a particular model and the future suggestions for improvement of this work
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper provides a review of the chemical reactions occurring in the submerged arc processing of chromite ores. The excavations of industrial furnaces have shown that the charge, as it descends through the furnace, passes through a number of distinct reaction zones. Each zone is characterised by differing process conditions and reaction products. The phase equilibria, reaction steps and mechanisms occurring as the charge progresses through the furnace are examined, and the potential influences of these factors on the process outcomes are discussed.