963 resultados para Submarine topography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The species and characteristics of Radiolaria in the surface sediments were systematcally investigated in the sea east of Taiwan Island. One hundred and seventy-eight species of Radiolaria (including 21 unidentified species) have been identified in the surface sediments, and they belong to 2 orders, 34 families and 101 genera. Among them there are 19 families, 70 genera, 134 species of Spumellaria and 15 families, 31 genera, 44 species of Nassellaria. Of the 178 species of Radiolaria, the individual number of Spumellaria amounts to 88.1% of the total individual number, and that of Nassellaria amounts to 11.9% of the total individual number. It is shown that most of the dominant species belong to the tropical and subtropical dominant species and are brought into the area mainly by the Kuroshio, and some affecting factors including the submarine topography, submarine sediments, upwelling current east of Taiwan Island and carbonate dissolution play a secondary role in forming the Radiolaria distributions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ori-in of the radial sand ridges (RSRs) in the southern Yellow Sea has been a controversial problem since they were discovered in the early 1960s. To resolve the problem, two key questions need to be answered: (1) was the radial tidal current field in the RSR area generated by the submarine topography, or (2) did it exist before the RSRs occurred? In this study, the M-2 tide and tidal currents in the RSR area were simulated with a two-dimensional tidal model using a flat bottom and a shelving slope topography, the results being then compared with the field data. It is demonstrated that the radial tidal current field in the southern Yellow Sea is independent of bottom topography, and may thus be the controlling factor generating the RSRs. The radial tidal current field probably existed before the RSRs were formed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study describes a Late Miocene (early Tortonian - early Messinian) transitional carbonate system that combines elements of tropical and cool-water carbonate systems (Irakleion Basin, island of Crete, Greece). As documented by stratal geometries, the submarine topography of the basin was controlled by tilting blocks. Coral reefs formed by Porites and Tarbellastrea occurred in a narrow clastic coastal belt along a „central Cretan landmass“, and steep escarpments formed by faulting. Extensive covers of level-bottom communities existed in a low-energy environment on the gentle dip-slope ramps of the blocks that show the widest geographical distribution within the basin. Consistent patterns of landward and basinward shift of coastal onlap in all outcrop studies reveal an overriding control of 3rd and 4th order sea level changes on sediment dynamics and facies distributions over block movements. An increasingly dry climate and the complex submarine topography of the fault block mosaic kept sediment and nutrient discharge at a minimum. The skeletal limestone facies therefore reflects oligotrophic conditions and a sea surface temperature (SST) near the lower threshold temperature of coral reefs in a climatic position transitional between the tropical coral reef belt and the temperate zone. Stable isotope records (δ18O, δ13C) from massiv, exceptionally preserved Late Miocene aragonite coral skeletons reflect seasonal changes in sea surface temperature and symbiont autotrophy. Spectral analysis of a 69 years coral δ18O record reveals significant variance at interannual time scales (5-6 years) that matches the present-day eastern Mediterranean climate variability controlled by the Arctic Oscillation/North Atlantic Oscillation (AO/NAO), the Northern Hemisphere’s dominant mode of atmospheric variability. Supported by simulations with a complex atmospheric general circulation model coupled to a mixed-layer ocean model, it is suggested, that climate dynamics in the eastern Mediterranean and central Europe reflect atmospheric variability related to the Icelandic Low 10 million years ago. Usually, Miocene corals are transformed in calcite spar in geological time and isotope values are reset by diagenetic alteration. It is demonstrated that the relicts of growth bands represent an intriguing source of information for the growth conditions of fossil corals. Recrystallized growth bands were measured systematically in massive Porites from Crete. The Late Miocene corals were growing slowly with 2-4 mm/yr, compatible with present-day Porites from high latitude reefs, a relationship that fits the position of Crete at the margin of the Miocene tropical reef belt. Over Late Miocene time (Tortonian - early Messinian) growth rates remained remarkably constant, and if the modern growth temperature relationship for massive Porites applies to the Neogene, minimum (winter) SST did not exceed 19-21°C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the South Atlantic and adjoining Southern Ocean the kaolinite/chlorite-ratio in Late Quaternary sediments are an alternative deep water proxy to benthic foraminiferal proxies and carbonate preservation indices that is even suitable in regions with poor carbonate preservation. This paper shows the relationship between modern abyssal circulation and the kaolinite/chloriteratio and presents reconstructions of deep and bottom water advection based on the kaolinite/ chlorite proxy. We also discuss the limitations and future perspectives of the kaolinite/chlorite proxy. Latitudinal and water depth-related patterns of the kaolinite/chlorite-ratio in surface sediments correspond to the modern deep and bottom water mass distribution. Kaolinite originates from lowlatitudes and traces North Atlantic Deep Water (northern-source deep water) advection to the south. Chlorite from the southern high-latitudes is exported via northward advecting Antarctic Bottom Water and Circumpolar Deep Water (southern-source deep and bottom water). Deep-sea sedimentation in regions underlying the Antarctic Circumpolar Current was current-dominated throughout the Late Quaternary. Temporal variations of the kaolinite/chlorite-ratio in response to glacial-interglacial cycles reflect changing deep water mass configurations, suggesting a shallowing and northward retreat of northern-source deep water and accordingly wider expansion of southernsource deep and bottom water masses during glacial times relative to interglacial times. Submarine topography influenced the spatial and temporal patterns of deep water mass distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial - interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances. For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial-interglacial (G-I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G-I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G-I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography. Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G-I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"December 1982."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 1974, the Geological Survey of Japan began its systematic investigation of manganese nodules in the Central Pacific Basin on the new geological research vessel Hakurei Maru. The first cruise (GH 74-5) was carried out over an eastern part area of the Basin (6°-10°30'N, 164°30'-171°30'W), and the authors report here the preliminary results on the occurrence of manganese nodule deposits, paying particular consideration to their relationship to submarine topography and surficial and sub-bottom sedimentary facies. The surveyed area comprises a deep-sea basin at 5,000-5,400 m, defined to the north and east by the chain of seamounts and guyots of the Christmas Ridge. The deep-sea basin is divided roughly into 2 contrasting topographic features. The eastern part is characterised by flattened topography resulting from continuous deposition of turbidities; the meridian and western parts are characterised by gently rolling topography and the existence of a large number of deep-sea hills. Manganese nodules are almost lacking in the former flattened eastern area, whereas they are widely distributed in the latter rolling meridian and western parts. The population density of nodules varies from less than 1 Kg/m² to 26 kg/m² and the higher density is found in the siliceous-calcareous ooze zone of rather small, flat basins surrounded by deep-sea hills. The density is closely related to the thickness of the transparent layer obtained by 3.5 kHz PDR profiling over the whole area. Considering the various data of grab sampling, 3.5 kHz PDR profiling and to a lesser extent of deep-sea television and camera observations, the most promising manganese field in the present area seems to be confined to the north of the western sector of the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115 × 10 6 m 3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35 min, giving peak pyroclastic flow flux of 66 × 10 3 m 3 s -1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7 km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40 km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200 m of topography and eroded up to 20 cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210 × 10 6 m 3) Soufrière Hills dome collapse in July 2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of a large meridional submarine ridge on the decay of Agulhas rings is investigated with a 1 and 2-layer setup of the isopycnic primitive-equation ocean model MICOM. In the single-layer case we show that the SSH decay of the ring is primarily governed by bottom friction and secondly by the radiation of Rossby waves. When a topographic ridge is present, the effect of the ridge on SSH decay and loss of tracer from the ring is negligible. However, the barotropic ring cannot pass the ridge due to energy and vorticity constraints. In the case of a two-layer ring the initial SSH decay is governed by a mixed barotropic–baroclinic instability of the ring. Again, radiation of barotropic Rossby waves is present. When the ring passes the topographic ridge, it shows a small but significant stagnation of SSH decay, agreeing with satellite altimetry observations. This is found to be due to a reduction of the growth rate of the m = 2 instability, to conversions of kinetic energy to the upper layer, and to a decrease in Rossby-wave radiation. The energy transfer is related to the fact that coherent structures in the lower layer cannot pass the steep ridge due to energy constraints. Furthermore, the loss of tracer from the ring through filamentation is less than for a ring moving over a flat bottom, related to a decrease in propagation speed of the ring. We conclude that ridges like the Walvis Ridge tend to stabilize a multi-layer ring and reduce its decay.