993 resultados para Submarine Silicic Caldera
Resumo:
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new influx of sea-rafted pumice reached the eastern coast of Australia in October 2002, approximately 1 year after a felsic, shallow-marine explosive eruption at a previously unknown volcano (0403-091) along the Tofua volcanic arc (Tonga). The eruption produced floating pumice rafts that first became stranded in Fiji in November 2001, approximately I month after the eruption. Strandings of sea-rafted pumice along shorelines have been the only record of products from this submarine explosive eruption at the remote, submerged volcano. Computed drift trajectories of the sea-rafted pumice using numerical models of southwest Pacific surface wind fields and ocean currents indicate two cyclonic systems disturbed the drift of pumice to eastern Australia, as well as the importance of the combined wave and direct wind effect on pumice trajectory. Pumice became stranded along at least two-thirds (>2000 km) of the coastline of eastern Australia, being deposited on beaches during a sustained period of fresh onshore winds. Typical amounts of pumice initially stranded on beaches were 500-4000 individual clasts per in, and a minimum volume estimate of pumice that arrived to eastern Australia is 1.25 x 10(5) m(3). Pumice was beached below maximum tidal/storm surge levels and was quickly reworked back into the ocean, such that the concentration of beached pumice rapidly dissipated within weeks of the initial stranding, and little record of this stranding event now exists. Most stranded pumice clasts ranged in size from 2 to 5 cm in diameter; the largest measured clasts were 10 cm in Australia and 20 cm in Fiji. The pumice has a low phenocryst content (3500 km) and period of pumice floatation (greater than or equal to1 year), confirm the importance of sea-rafted pumice as a long-distance dispersal mechanism for marine organisms including marine pests and harmful invasive species. Billions of individual rafting pumice clasts can be generated in a single small-volume eruption, such as observed here, and the geological implications for the transport of sessile taxa over large distances are significant. An avenue for future research is to examine whether speciation events and volcanicity are linked; the periodic development of globalism for some taxa (e.g., corals, gastropods, bryozoa) may correlate in time and/or space with voluminous silicic igneous events capable of producing >10(6) km(3) of silicic pumice-rich pyroclastic material and emplaced into ocean basins. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.
Resumo:
The Upper Devonian to Lower Carboniferous volcanosedimentary rocks of the Yarrol terrane of the northern New England Fold Belt have previously been ascribed to a forearc basin setting. New data presented here, however, suggest that the Yarrol terrane developed as a backarc basin during the Middle to early Late Devonian. Based on field studies, we recognise four regionally applicable strati graphic units: (i) a basal, ?Middle to Upper Devonian submarine mafic volcanic suite (Monal volcanic facies association); (ii) the lower Frasnian Lochenbar beds that locally unconformably overlie the Monal volcanic facies association: (iii) the Three Moon Conglomerate (Upper Devonian - Lower Carboniferous): and (iv) the Lower Carboniferous Rockhampton Group characterised by the presence of oolitic limestone. Stratigraphic and compositional differences suggest the Monal volcanic facies association post-dates Middle Devonian silicic-dominated magmatism that was coeval with gold-copper mineralisation at Mt Morgan. The Lochenbar beds, Three Moon Conglomerate and Rockhampton Group represent a near-continuous sedimentary record of volcanism that changed in composition and style from mafic effusive (Late Devonian) to silicic explosive volcanism (Early Carboniferous). Palaeocurrent data from the Three Moon Conglomerate and Rockhampton Group indicate dispersal of sediment to the west and northwest, and are inconsistent with derivation from a volcanic-are source situated to the west (Connors-Auburn Arch). Geochemical data show that the Monal volcanic facies association ranges from tholeiitic subalkaline basalts to calc-alkaline basaltic andesite. Trace and rare-earth element abundances are distinctly MORE-like (e.g, light rare earth element depletion), with only moderate enrichment of the large-ion lithophile elements in some units, and negative Nb anomalies, suggesting a subduction-related signature. Basalts of the Monal volcanic facies association are best described as transitional between calc-alkali basalts and N-MORB. The elevated high field strength element contents (e.g. Zr, Y, Ti) are higher than modern island-are basalts, but comparable to basalts that floor modern backarc basins. This geochemical study, coupled with stratigraphic relationships, suggest that the eruption of backarc basin basalts followed widespread Middle Devonian, extension-related silicic magmatism (e.g. Retreat Batholith, Mt Morgan), and floored the Yarrol terrane. The Monal volcanic facies association thus shows similarities in its tectonic environment to the Lower Permian successions (e.g. Rookwood Volcanics) of the northern New England Fold Belt. These mafic volcanic sequences are interpreted to record two backarc basin-forming periods (Middle - Late Devonian and Late Carboniferous - Early Permian) during the Late Palaeozoic history of the New England Orogen. Silicic-dominated explosive volcanism, occurring extensively across the northern New England Fold Belt in the Early Carboniferous (Varrol terrane, Campwyn Volcanics, Drummond and Burdekin Basins), reflects another period of crustal melting and extension, most likely related to the opening of the Drummond Basin.
Resumo:
The Las Canadas caldera is a nested collapse caldera formed by the successive migration and collapse of shallow magmatic chambers. Among the pyroclastic products of this caldera are phonolitic fallout deposits that crop out in the caldera wall and on the extracaldera slopes. These deposits exhibit an uninterrupted facies gradation from nonwelded to lava-like and record continuous volcanic deposition. Densely welded and lava-like facies result from the extreme attenuation and complete homogenization of juvenile clasts that destroy original clast outlines and any evidence of fallout deposition. Agglutination contributes significantly to the final degree of flattening observed in the welded facies. After deposition, rheomorphic flowage occurs. Emplacement temperatures for one of the welding sequences are calculated from magmatic temperatures and a model of tephra cooling during fallout. Results are 486 degreesC for the nonwelded facies and 740 degreesC for the moderately welded facies. For the same welding sequence, a cooling time between 25 and 54 days is estimated from published experimental and computational data as the possible duration of welding and rheomorphism. Following deposition and agglutination, the lava-like pyroclastic facies had the rheological properties of viscous lavas and flowed down the outer slopes away from the caldera. Some lava-like masses detached from proximal areas to more distal regions. During deposition, the eruptive style evolved from Plinian fallout to fountain-fed spatter deposition. This evolution was accompanied by a decrease in explosive power and a lower height of the eruptive column, which produce higher emplacement temperatures and more effective heat retention of pyroclasts.
Resumo:
Upper Devonian to Lower Carboniferous strata of the Campwyn Volcanics of east central Queensland preserve a substantial sequence of first-cycle volcaniclastic sedimentary and coeval volcanic rocks that record prolonged volcanic activity along the northern New England Fold Belt. The style and scale of volcanism varied with time, producing an Upper Devonian sequence of mafic volcano-sedimentary rocks overlain by a rhyolitic ignimbrite-dominated sequence that passes upward into a Lower Carboniferous limestone-bearing sedimentary sequence. We define two facies associations for the Campwyn Volcanics. A lower facies association is dominated by mafic volcanic-derived sedimentary breccias with subordinate primary mafic volcanic rocks comprising predominantly hyaloclastite and peperite. Sedimentary breccias record episodic and high energy, subaqueous depositional events with clastic material sourced from a mafic lava-dominated terrain. Some breccias contain a high proportion of attenuated dense, glassy mafic juvenile clasts, suggesting a syn-eruptive origin. The lower facies association coarsens upwards from a lithic sand-dominated sequence through a thick interval of pebble- to boulder-grade polymict volcaniclastic breccias, culminating in facies that demonstrate subaerial exposure. The silicic upper facies association marks a significant change in eruptive style, magma composition and the nature of eruptive sources, as well as the widespread development of subaerial depositional conditions. Crystal-rich, high-grade, low- to high-silica rhyolite ignimbrites dominate the base of this facies association. Biostratigraphic age controls indicate that the ignimbrite-bearing sequences are Famennian to lower-mid Tournaisian in age. The ignimbrites represent extra-caldera facies with individual units up to 40 m thick and mostly lacking coarse lithic breccias. Thick deposits of pyroclastic material interbedded with fine-grained siliceous sandstone and mudstone (locally radiolarian-bearing) were deposited from pyroclastic flows that crossed palaeoshorelines or represent syn-eruptive, resedimented pyroclastic material. Some block-bearing lithic-pumice-crystal breccias may also reflect more proximal subaqueous silicic explosive eruptions. Crystal-lithic sandstones interbedded with, and overlying the ignimbrites, contain abundant detrital volcanic quartz and feldspar derived from the pyroclastic deposits. Limestone is common in the upper part of the upper facies association, and several beds are oolitic (cf. Rockhampton Group of the Yarrol terrane). Overall, the upper facies association fines upward and is transgressive, recording a return to shallow-marine conditions. Palaeocurrent data from all stratigraphic levels in the Campwyn Volcanics indicate that the regional sediment-dispersal direction was to the northwest, and opposed to the generally accepted notion of easterly sediment dispersal from a volcanic arc source. The silicic upper facies association correlates in age and lithology to Early Carboniferous silicic volcanism in the Drummond (Cycle 1) and Burdekin Basins, Connors Arch, and in the Yarrol terranes of eastern Queensland. The widespread development of silicic volcanism in the Early Carboniferous indicates that silicic (rift-related) magmatism was not restricted to the Drummond Basin, but was part of a more substantial silicic igneous province.
Resumo:
The Setúbal and São Vicente canyons are two major modern submarine canyons located in the southwest Iberian margin of Portugal. Although recognised as Pliocene to Quaternary features, their development during the Tertiary has not been fully understood up to date. A grid of 2D seismic data has been used to characterise the sedimentary deposits of the adjacent flanks to the submarine canyons. The relationship between the geological structure of the margin and the canyon's present location has been investigated. The interpretation of the main seismic units allowed the recognition of three generations of ravinements probably originated after middle Oligocene. Six units grouped in two distinctive seismic sequences have been identified and correlated with offshore stratigraphic data. Seismic Sequence 2 (SS2), the oldest, overlies Mesozoic and upper Eocene deformed units. Seismic Sequence I (SS1) is composed of four different seismic packages separated from SS2 by an erosional surface. The base of the studied sediment ridges is marked by an extensive erosional surface derived from a early/middle Oligocene relative sea-level fall. Deposition in the adjacent area to the actual canyons was reinitiated in late Oligocene in the form of transgressive and channel-fill deposits. A new depositional hiatus is recorded onshore during the Burdigalian, coincident with the unconformity separating SS1 and SS2. This can be correlated with the Arrábida unconformity and with the paroxysmal Burdigalian phase of the Betic domain. Presently, the Setúbal and São Vicente submarine canyons locally cut SS1 and SS2, forming distinctive channels from those recognised on the seismic data. On the upper shelf both dissect highly deformed areas subject to important erosion.
Resumo:
Highly evolved rhyolite glass plus near-solidus mineral assemblages in voluminous, dacitic, crystal-rich ignimbrites provide an opportunity to evaluate the late magmatic evolution of granodiorite batholiths. This study reports laser-ablation ICP-MS analyses of trace element concentrations in feldspars, hornblende, biotite, titanite, zircon, magnetite, and interstitial glass of the crystal-rich Fish Canyon Tuff. The high-silica rhyolite glass is characterized by relatively high concentrations of feldspar-compatible elements (e.g., 100 ppm Sr and 500 ppm Ba) and low concentrations of Y (< 7 ppm) and HREE (&SIM; 1 ppm Yb), hence high LREE/HREE (Ce/Yb > 40) compared to many well-studied high-silica rhyolite glasses and whole-rock compositions. Most minerals record some trace element heterogeneities, with, in particular, one large hornblende phenocryst showing four- to six-fold core-to-rim increases in Sr and Ba coupled with a decrease in Sc. The depletions of Y and HREE in the Fish Canyon glass relative to the whole-rock composition (concentrations in glass &SIM; 30% of those in whole rocks) reflect late crystallization of phases wherein these elements were compatible. As garnet is not stable at the low-P conditions at which the Fish Canyon magma crystallized, we show that a combination of modally abundant hornblende (&SIM; 4%) + titanite (&SIM; 0.5-1%) and the highly polymerized nature of the rhyolitic liquid led to Y and HREE depletions in melt. Relatively high Sr and Ba contents in glass and rimward Sr and Ba increases in euhedral, concentrically zoned hornblende suggest partial feldspar dissolution and a late release of these elements to the melt as hornblende was crystallizing, in agreement with textural evidence for feldspar (and quartz) resorption. Both observations are consistent with thermal rejuvenation of the magma body prior to eruption, during which the proportion of melt increased via feldspar and quartz dissolution, even as hydrous and accessory phases were crystallizing. Sr/Y in Fish Canyon glass (13-18) is lower than the typical ``adakitic'' value (> 40), confirming that high Sr/Y is a reliable indicator of high-pressure magma generation and/or differentiation wherein garnet is implicated.
Resumo:
L’empresa RUSCALLEDA, S.L., ubicada a la localitat de Vic, es dedica a l’elaboració deproductes alimentaris. La instal·lació actual de generació de calor utilitza una caldera antiga de combustible líquid i té una capacitat de producció de vapor de 1.500 kg/h. A causa de la demanda creixent de productes semielaborats, l'empresa vol instal·lar tres unitats noves de la línia final de productes semielaborats. Aquestes noves unitats tindrien un considerable consum d’energia calorífica en forma de vapor i requeririen actualitzar la instal·lació actual de producció i distribució de calor. L’objecte del projecte és la instal·lació d’un segon generador de vapor que sigui capaç d’alimentar la instal·lació actual més l’ampliació, quedant el generador actual en paral·lel per ser utilitzat en cas d’emergència
Resumo:
Projecte de la instal•lació de calefacció i agua calenta utilitzant energia solar tèrmica i ajudant-se d’ una caldera de biomassa en un edifici en construcció situat a Colera (Alt Empordà). Es tracta d’un bloc de quatre vivendes distribuïdes en dues plantes, soterrani i terrassa superior
Resumo:
L’Ajuntament d’un municipi de la comarca de la Selva disposa d’un complex esportiuformat per un edifici amb piscines climatitzades i un pavelló d’esports. Actualment laproducció de calefacció es realitza mitjançant calderes amb cremador de gasoil. Degut al’antiguitat d’aquests equips, a l’elevat cost que suposa la producció amb aquest tipus decombustible i tenint en compte que el municipi no disposa de xarxa de distribució de gasciutat, l’ajuntament contempla la possibilitat d’instal•lar un sistema de producciócentralitzat amb caldera de biomassa.L’objecte d’aquest projecte és el disseny i definició de la instal•lació d’una caldera deproducció d’aigua calenta sanitària i de calefacció mitjançant l’ús de biomassa tipuspellets de fusta integrada dins un mòdul prefabricat que inclou la sitja d’emmagatzematgei tots els elements necessaris, formant un sistema compacte i autònom per alsubministrament i distribució de l’aigua calenta per als dos edificis que formen el complexesportiu de la población. L’àmbit d’aplicació d’aquest projecte és:- Disseny i implantació del Mòdul autònom de producció de calefacció- Dimensionat dels circuits hidràulics de distribució a punts deCom a punt de partida per dimensionar la nova instal•lació de producció s’han tingut encompte les potències instal•lades actuals però també s’han realitat els càlculs de lesnecessitats actuals tenint en compte les exigències del nou Reglament d’Instal•lacionsTèrmiques en els Edificis (RITE 2007) quant a condicions interiors i d’estalvi energètic
Resumo:
Se ha estudiado los efectos que tiene la aplicación de cenizas de caldera de biomasa, en el modelo jerárquico de agregación (Tisdall y Oades, 1982) y en la estabilización del C orgánico en un suelo forestal situado en la zona templada del País Vasco. Para ello, se aplicaron 3 tratamientos con diferentes dosis de ceniza en muestras de suelo tamizadas a 250 μm procedentes de un huerto semillero de pinus radiata. Estas muestras fueron incubadas durante 3 meses y fraccionadas los días 29, 44, 64, 78 y 92 con la intención de separar los macroagregados grandes (LMagg), de los macroagregados pequeños (Magg), microagregados (magg), limos (silt) y arcillas (clay). Todas las fracciones fueron analizadas para determinar su contenido en C orgánico. Los resultados mostraron que con la aplicación de cenizas, el modelo jerárquico de agregación de suelo se cumple para las fracciones LMagg, Magg y magg, pero no para la fracción silt. Además se ha observado que las cenizas promueven la formación de microagregados aumentado así la capacidad de secuestro de C del suelo, pero en cambio disminuye la proporción de macroagregados, hecho que podría acarrear una disminución en la calidad estructural del suelo.
Resumo:
Silicon (Si) is beneficial to plants in several aspects, but there are doubts about the effectiveness of leaf application. The purpose of this work was to evaluate the effects of Si, applied in a newly developed stabilized silicic acid form to the leaf, on nutrition and yield of irrigated white oat and wheat. Two experiments were performed (one per crop) in winter 2008, in Botucatu-SP, Brazil. A completely randomized block design with 14 replications was used. Treatments consisted of a control (without Si application) and Si leaf spraying, at a rate of 2.0 L ha-1 of the commercial product containing 0.8 % soluble Si. Silicon rate was divided in three parts, i.e. applications at tillering, floral differentiation and booting stages. Silicon leaf application increased N, P, K, and Si concentrations in white oat flag leaf, resulting in higher shoot dry matter, number of panicles per m², number of grains per panicle and grain yield increase of 34 %. In wheat, Si leaf application increased K and Si concentrations, shoot dry matter and number of spikes per m², resulting in a grain yield increase of 26.9 %.