1000 resultados para Sublattice model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wydział Fizyki: Zakład Fizyki Komputerowej

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A otimização de sistemas do tipo Ti-Si-X requer que os sistemas binários estejam constantemente atualizados. O sistema Ti-Si foi investigado experimentalmente desde a década de 50 e poucos estudos usaram os dados experimentais para calcular o diagrama de fases Ti-Si usando modelamento termodinâmico. A otimização mais recente do sistema Ti-Si foi realizada em 1998, descrevendo a fase Ti5Si3 como um intermetálico não estequiométrico contendo três sub-redes e mostrando a presença da fase intermetálica estequiométrica Ti3Si. Dada a recente disputa sobre a cinética de precipitação e a estabilidade das fases Ti3Si e Ti5Si3 nos sistemas Ti-Si e Ti-Si-X, o canto rico em titânio do sistema Ti-Si (estável e metaestável) foi otimizado no presente trabalho. Os limites de estabilidade de fases, os valores dos erros pelo método dos mínimos quadrados do procedimento de otimização e os desvios padrões relativos das variáveis calculadas foram discutidos para inspirar a realização de mais trabalhos experimentais para investigar as reações eutetóides estáveis e/ou metaestáveis, ?->? + Ti3Si e ?->? + + Ti5Si3; e para melhorar cada vez mais as otimizações termodinâmicas do diagrama de fases do sistema Ti-Si.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-singular solid solutions of La0.6Sr0.4Mn1-yMeyO3 (0 <= y <= 0.3) [Me=Li1+, Mg2+, Al3+, Ti4+, Nb5+, Mo6+ or W6+] [LSMey] perovskite of rhombohedral symmetry (space group: R (3) over barc) have been prepared wherein the valence of the diamagnetic substituent at Mn site ranged from 1 to 6. With increasing y-content in LSMey, the metal-insulator (TM-I) transition in resistivity-temperature rho(T) curves shifted to low temperatures. The magnetization studies M(H) as well as the M(T) indicated two groups for LSMey. (1) Group A with Me=Mg, Al, Ti, or Nb which are paramagnetic insulators (PIs) at room temperature with low values of M (< 0.5 mu(B)/Mn); the magnetic transition [ferromagnetic insulator (FMI)-PI] temperature (T-C) shifts to low temperatures and nearly coincides with that of TM-I and the maximum magnetoresistance (MR) of similar to 50% prevails near T-C (approximate to TM-I). (2) Group-B samples with Me=Li, Mo, or W which are FMIs with M-s=3.3-3.58 mu(B)/Mn and marginal reduction in T-C similar to 350 K as compared to the undoped LSMO (T-C similar to 378 K). The latter samples show large temperature differences Delta T=T-c-TM-I, reaching up to similar to 288 K. The maximum MR (similar to 60%) prevails at low temperatures corresponding to the M-I transition TM-I rather than around T-C. High resolution lattice images as well as microscopy analysis revealed the prevalence of inhomogeneous phase mixtures of randomly distributed charge ordered-insulating (COI) bistripes (similar to 3-5 nm width) within FMI charge-disordered regions, yet maintaining crystallographically single phase with no secondary precipitate formation. The averaged ionic radius < r(B)>, valency, or charge/radius ratio < CRR > cannot be correlated with that of large Delta T; hence cannot be used to parametrize the discrepancy between T-C and TM-I. The M-I transition is controlled by the charge conduction within the electronically heterogeneous mixtures (COI bistripes+FMI charge disordered); large MR at TM-I suggests that the spin-ordered FM-insulating regions assist the charge transport, whereas the T-C is associated with the bulk spin ordered regions corresponding to the FMI phase of higher volume fraction of which anchors the T-C to higher temperatures. The present analysis showed that the double-exchange model alone cannot account for the wide bifurcation of the magnetic and electric transitions, contributions from the charge as well as lattice degrees of freedom to be separated from spin/orbital ordering. The heterogeneous phase mixtures (COI+FMI) cannot be treated as of granular composite behavior. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the spin-1 model on a triangular lattice in the presence of a uniaxial anisotropy field using a cluster mean-field (CMF) approach. The interplay among antiferromagnetic exchange, lattice geometry, and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF method yields two supersolid phases compatible with those present in the spin-1/2 XXZ model onto which the spin-1 system maps. Between these two supersolid phases, the three-sublattice order is broken and the results of the CMF approach depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the thermodynamic properties and the phase diagrams of a multi-spin antiferromagnetic spherical spin-glass model using the replica method. It is a two-sublattice version of the ferromagnetic spherical p-spin glass model. We consider both the replica-symmetric and the one-step replica-symmetry-breaking solutions, the latter being the most general solution for this model. We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy antiferromagnetic phases. The phase transitions are always of second order in the thermodynamic sense, but the spin-glass order parameter may undergo a discontinuous change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effect of sublattice symmetry breaking on the electronic, magnetic, and transport properties of two-dimensional graphene as well as zigzag terminated one- and zero-dimensional graphene nanostructures. The systems are described with the Hubbard model within the collinear mean field approximation. We prove that for the noninteracting bipartite lattice with an unequal number of atoms in each sublattice, in-gap states still exist in the presence of a staggered on-site potential ±Δ/2. We compute the phase diagram of both 2D and 1D graphene with zigzag edges, at half filling, defined by the normalized interaction strength U/t and Δ/t, where t is the first neighbor hopping. In the case of 2D we find that the system is always insulating, and we find the Uc(Δ) curve above which the system goes antiferromagnetic. In 1D we find that the system undergoes a phase transition from nonmagnetic insulator for U

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.