953 resultados para Sub-wavelength structures
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
The authors present an analysis of a plasmonic waveguide, simulated using a two-dimensional finite-difference time-domain technique. With the surface structures located on the surface of the metal, the device is able to confine and guide light waves in a sub-wavelength scale. And two waveguides can be placed within 150 nm (similar to 6% of the incident wavelength) that will helpful for the optoelectronic integration. Within the 20 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly two to four times the peak intensity of the incident light, and the propagation length can reach approximately 40 Pm at the wavelength of 2.44 mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We explore the thesis that tall structures can be protected by means of seismic metamaterials. Seismic metamaterials can be built as some elements are created over soil layer with different shapes, dimensions, patterns and from different materials. Resonances in these elements are acting as locally resonant metamaterials for Rayleigh surface waves in the geophysics context. Analytically we proved that if we put infinite chain of SDOF resonator over the soil layer as an elastic, homogeneous and isotropic material, vertical component of Rayleigh wave, longitudinal resonance of oscillators will couple with each other, they would create a Rayleigh bandgap frequency, and wave will experience attenuation before it reaches the structure. As it is impossible to use infinite chain of resonators over soil layer, we considered finite number of resonators throughout our simulations. Analytical work is interpreted using finite element simulations that demonstrates the observed attenuation is due to bandgaps when oscillators are arranged at sub-wavelength scale with respect to the incident Rayleigh wave. For wavelength less than 5 meters, the resulting bandgaps are remarkably large and strongly attenuating when impedance of oscillators matches impedance of soil. Since longitudinal resonance of SDOF resonator are proportional to its length inversely, a formed array of resonators that attenuates Rayleigh waves at frequency ≤10 Hz could be designed starting from vertical pillars coupled to the ground. Optimum number of vertical pillars and their interval spacing called effective area of resonators are investigated. For 10 pillars with effective area of 1 meter and resonance frequency of 4.9 Hz, bandgap frequency causes attenuation and a sinusoidal impulsive force illustrate wave steering down phenomena. Simulation results proved analytical findings of this work.
Resumo:
We quantitatively analysed the factors contributing to the optical transmission enhancement of a sub-wavelength Sb thin film lens, using the finite-difference time-domain (FDTD) method. The results show that the transmission enhancement of the dielectric with a Gaussian distributed refractive index loaded in a sub-wavelength circular hole is not only due to the high refractive index dielectric, but also due to the specific distributions of refractive index. It is the first study about the effects of the refractive index distribution on the transmission of a sub-wavelength aperture. This kind of lens has practical applications in the very small aperture lasers and for near-field optical storage and lithography.
Resumo:
We present a theoretical and experimental research about applying a very-small-aperture laser (VSAL) to detect sub-wavelength data. Near-field distribution of a VSAL, which is essential for the application of such near-field devices, will be affected by the sample or fiber posited in the near-field region of the aperture. When the device is applied to detect the sub-wavelength data, the real resolution depends on the near-field spot size, the divergent angle of the beam and the distance from the aperture to the sample. Experimental results, including the near-field detection of the spot and detection of the sub-wavelength data by using the VSAL, are presented in this paper. We realize the two dimensional scanning about the sub-wavelength data (with the width 600 nm) by employing a VSAL with a 300 nm x 300 nm aperture.
Resumo:
In this paper we have conclusively proven that the "enhanced" optical transmission through a periodic array of sub-wavelength holes in metal films (Ebbessen's experiment) is the result of the array periodicity. This work has overturned the commonly accepted theory that the surface plasmons were responsible for the transmission enhancement. It was demonstrated that the reflectance, transmittance and frequency selectivity of the multilayered arrays can be efficiently modified by the aperture shapes.
Resumo:
Experimental results are presented for the focusing capability of an active phase conjugating lens for a single and a dipole source pair and these are compared with predictions. In addition for a single source we illustrate the ability of the lens to project a null at the lens focus instead of a peak. A scheme is also presented such that when a source or pair of sources is imaged through an identical pair of passive scatterers located symmetrically about the lens that imaging with sub-wavelength resolution is possible. The rationale for the operation of the lens and aberrations observed due to its finite array size is discussed and is supported throughout by means of numerical simulation.
Resumo:
A fast and accurate analysis and synthesis technique for high-gain sub-wavelength 2-D Fabry-Perot leaky-wave antennas (LWA) consisting of two periodic metallodielectric arrays over a ground plane is presented. Full-wave method of moments (MoM) together with reciprocity is employed for the estimation of the near fields upon plane wave illumination and the extraction of the radiation patterns of the LWA. This yields a fast and rigorous tool for the characterisation of this type of antennas. A thorough convergence study for different antenna designs is presented and the operation principles of these antennas as well as the radiation characteristics are discussed. Moreover, design guidelines to tailor the antenna profile, the dimensions of the arrays as well as the antenna directivity and bandwidth are provided. A study on the radiation efficiency for antennas with different profiles is also presented and the trade off between directivity and radiation bandwidth is discussed. Numerical examples are given throughout to demonstrate the technique. A finite size antenna model is simulated using commercial software (CST Microstripes 2009) which validates the technique.