999 resultados para Sub-watershed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This project application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in three targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are: (1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs; (2) assistance for landowners to apply BMPs for 1,200 acres that will reduce the annual delivery of sediment by 1,800 tons and phosphorus by 6,000 pounds; (3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

 Urbanization has profound influence on the hydrologic response of landscapes. Urban transformation affects the storages and processes that determine the generation of hydrologic fluxes. It also changes the time-scales associated with hydrologic processes. Shifts in hydrologic response of the watershed unit due to urban transformation may be more complex than the simple linear mixing (weighted sum) of responses from the urbanized and non-urbanized fractions of the landscape. This may especially be the case for tropical watersheds where the precipitation forcing of the watershed is frequent and intense - interacting with the shifting time-scales and changing storages with increasing urbanization. In this study, a fully distributed hydrological model (MOBIDIC) that captures hydrologic dynamics during storms and interstorms is applied in order to characterize the potentially nonlinear response of a tropical watershed to urban transformation. Indices that quantify the departures from linear response are introduced and used to test the effects of urbanization on different hydrologic processes and fluxes in a mixed (urban and non-urban) watershed. The tropical Kranji watershed in Singapore is used in this study. Fortunately two sub-watersheds within Kranji that have streamflow gaging stations are well-suited for the calibration of the model. One sub-watershed is nearly fully urbanized and another is pristine (non-urban). As a result the contrasting components (urban and non-urban) can be calibrated in the model. The simulation system is then used to assess the hydrologic response due to changing levels of urbanization. For some fluxes and storages, the hydrologic response due to changing urban fraction cannot be simply predicted from a linear mixing model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The watershed is considered a unit of territorial study, planning and land management, and is molded by the local geologic conditions and climate. Thus, this study aimed to assess the morphometric features of the subwatershed of Cascata Stream, in Botucatu (SP), and their implications for the siltation process in a lake. The assessment included indexes generated from data calculated by means of a digitalized cartographic basis georeferenced on the 1:10,000 scale using the software AutoCad map 2004. The software Quantum GIS 1.8 was also employed to generate the digital elevation model (DEM) and the map of declivities which led to the mean declivity (Dm) of the subwatershed. According to the indexes form factor (Kf), sinuosity (Is), circularity (Ic) and compacity coefficient (Kc), the subwatershed had elongated form, low propensity to floods and rapid flow. The draining density (Dd) and relief ratio (Rr) indicated more efficient mean drainage, favoring higher desiccation and mean erosive stage. The roughness coefficient (Cr) indicated that this subwatershed is suited to agriculture. The anthropic intervention at the watershed dividing line is the major factor for sediment carrying in the lake and compromises not only the landscape beauty, but also the aquatic life of this ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The uncertainty associated with a rainfall-runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. © 2011 Copyright IAHS Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studying the physical environment of a watershed is the basic condition for a successful planning of the riparian forest preservation, and for water production and conservation. The aims of the present study were to analyze and quantify the spatial and temporal evolution (1984 and 2010) using Landsat-5 satellite images of Cintra Stream sub-watershed, Botucatu, São Paulo State, Brazil, processed by the software IDRISI Andes, as well as to analyze the water quality through the parameters pH, EC, DO and BOD5 at 4 different sites in the years 1999, 2008 and 2009. Considering the 1076.48ha area of the sub-watershed, the pasture class of 1984 was reduced by 25.55% in 2010, resulting in an increase in the remaining classes. The most important class was native forest and reforestation since it had an increase of 5.08%, which indicates recovery of the riparian forest. Degraded areas were identified close to the inferior limit of the sub-watershed (P3 and P4), as well as local contamination (P1 and P2) with worsening of the water quality in the remaining sites in the periods 2008 and 2009. Recovery and management of the ecological succession of degraded areas and water quality monitoring at 1 and 2 sites will be necessary to reestablish the natural condition of the area studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evaluation and adequacy of land occupation in Permanent Preservation Areas (PPAs) are important to ensure quantity and quality of water and local biodiversity. The objective of the study was mapping PPAs according to the Brazilian Forest Code and quantifying land cover and use, establishing the conflict of PPAs occupation in the Ribeirão Lavapés sub watershed. The area is 11,154.58 ha, and is located in Botucatu city, Midwestern region of São Paulo state. For this reason, geoprocessing tools, such as Remote Sensing and the Geographic Information System (SIG) were used. The dominant classes of land use and cover were the Urban Zone in Reverse Cuesta, 4,394.27 ha (39.39%) and Annual Crops in the Peripheral Depression, 3,670.89 ha (39.39%). The mapped area of native forest vegetal cover in the sub watershed was of 1,109.70 ha. Regarding the mapping of PPAs, considering the total area of 1,721.80 ha, a total of 532.15 ha (30.91%) are covered by Riparian Forest and 1,189.65 ha (69.09%) had no native riparian vegetation, therefore, requiring its reforestation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cintra stream is the major receiver of treated effluent from sanitary, hospital and research laboratory sewage from the UNESP campus in Botucatu, Rubião Júnior District, São Paulo state; and it has shown evidence of diffuse contamination by metals along it. Analyses of the most toxic metals (Pb, Cu, Fe, Ni and Zn) were carried out by using an atomic absorption spectrometer AA-6.800 - Perkin Elmer, analyst 700. ANOVA followed by the Tukey test were used for data analyses at 5% significance level. The main objective of this study was to compare current data on metal levels with data from other studies, in the same area, and of the same nature, conducted before and after implementation of chemical residue management by the university in 2008. Also, it aimed at identifying and quantifying possible diffuse and punctual contamination. Sites S1 and S2 showed punctual contamination, while diffuse sources were observed between S4 and S5. The quality of water in the Cintra Stream improved after establishment of the program of laboratory chemical residue management in the Campus of UNESP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study is to propose a method to assess the long-term chemical weathering mass balance for a regolith developed on a heterogeneous silicate substratum at the small experimental watershed scale by adopting a combined approach of geophysics, geochemistry and mineralogy. We initiated in 2003 a study of the steep climatic gradient and associated geomorphologic features of the edge of the rifted continental passive margin of the Karnataka Plateau, Peninsular India. In the transition sub-humid zone of this climatic gradient we have studied the pristine forested small watershed of Mule Hole (4.3 km(2)) mainly developed on gneissic substratum. Mineralogical, geochemical and geophysical investigations were carried out (i) in characteristic red soil profiles and (ii) in boreholes up to 60 m deep in order to take into account the effect of the weathering mantle roots. In addition, 12 Electrical Resistivity Tomography profiles (ERT), with an investigation depth of 30 m, were generated at the watershed scale to spatially characterize the information gathered in boreholes and soil profiles. The location of the ERT profiles is based on a previous electromagnetic survey, with an investigation depth of about 6 m. The soil cover thickness was inferred from the electromagnetic survey combined with a geological/pedological survey. Taking into account the parent rock heterogeneity, the degree of weathering of each of the regolith samples has been defined using both the mineralogical composition and the geochemical indices (Loss on Ignition, Weathering Index of Parker, Chemical Index of Alteration). Comparing these indices with electrical resistivity logs, it has been found that a value of 400 Ohm m delineates clearly the parent rocks and the weathered materials, Then the 12 inverted ERT profiles were constrained with this value after verifying the uncertainty due to the inversion procedure. Synthetic models based on the field data were used for this purpose. The estimated average regolith thickness at the watershed scale is 17.2 m, including 15.2 m of saprolite and 2 m of soil cover. Finally, using these estimations of the thicknesses, the long-term mass balance is calculated for the average gneiss-derived saprolite and red soil. In the saprolite, the open-system mass-transport function T indicates that all the major elements except Ca are depleted. The chlorite and biotite crystals, the chief sources for Mg (95%), Fe (84%), Mn (86%) and K (57%, biotite only), are the first to undergo weathering and the oligoclase crystals are relatively intact within the saprolite with a loss of only 18%. The Ca accumulation can be attributed to the precipitation of CaCO3 from the percolating solution due to the current and/or the paleoclimatic conditions. Overall, the most important losses occur for Si, Mg and Na with -286 x 10(6) mol/ha (62% of the total mass loss), -67 x 10(6) mol/ha (15% of the total mass loss) and -39 x 10(6) mol/ha (9% of the total mass loss), respectively. Al, Fe and K account for 7%, 4% and 3% of the total mass loss, respectively. In the red soil profiles, the open-system mass-transport functions point out that all major elements except Mn are depleted. Most of the oligoclase crystals have broken down with a loss of 90%. The most important losses occur for Si, Na and Mg with -55 x 10(6) mol/ha (47% of the total mass loss), -22 x 10(6) mol/ha (19% of the total mass loss) and -16 x 10(6) mol/ha (14% of the total mass loss), respectively. Ca, Al, K and Fe account for 8%, 6%, 4% and 2% of the total mass loss, respectively. Overall these findings confirm the immaturity of the saprolite at the watershed scale. The soil profiles are more evolved than saprolite but still contain primary minerals that can further undergo weathering and hence consume atmospheric CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forested areas play a dominant role in the global hydrological cycle. Evapotranspiration is a dominant component most of the time catching up with the rainfall. Though there are sophisticated methods which are available for its estimation, a simple reliable tool is needed so that a good budgeting could be made. Studies have established that evapotranspiration in forested areas is much higher than in agricultural areas. Latitude, type of forests, climate and geological characteristics also add to the complexity of its estimation. Few studies have compared different methods of evapotranspiration on forested watersheds in semi arid tropical forests. In this paper a comparative study of different methods of estimation of evapotranspiration is made with reference to the actual measurements made using all parameter climatological station data of a small deciduous forested watershed of Mulehole (area of 4.5 km2 ), South India. Potential evapotranspiration (ETo) was calculated using ten physically based and empirical methods. Actual evapotranspiration (AET) has been calculated through computation of water balance through SWAT model. The Penman-Montieth method has been used as a benchmark to compare the estimates arrived at using various methods. The AET calculated shows good agreement with the curve for evapotranspiration for forests worldwide. Error estimates have been made with respect to Penman-Montieth method. This study could give an idea of the errors involved whenever methods with limited data are used and also show the use indirect methods in estimation of Evapotranspiration which is more suitable for regional scale studies.