418 resultados para Stunt performers
Resumo:
"June, 1902"-- title page.
Resumo:
Rice grassy stunt virus is a member of the genus Tenuivirus, is persistently transmitted by a brown planthopper, and has occurred in rice plants in South, Southeast, and East Asia (similar to North and South America). We determined the complete nucleotide (nt) sequences of RNAs 1 (9760 nt), 2 (4069 nt), 3 (3127 nt), 4 (2909 nt), 5 (2704 nt), and 6 (2590 nt) of a southern Philippine isolate from South Cotabato and compared them with those of a northern Philippine isolate from Laguna (Toriyama et al., 1997, 1998). The numbers of nucleotides in the terminal untranslated regions and open reading frames were identical between the two isolates except for the 5′ untranslated region of the complementary strand of RNA 4. Overall nucleotide differences between the two isolates were only 0.08% in RNA 1, 0.58% in RNA 4, and 0.26% in RNA 5, whereas they were 2.19% in RNA 2, 8.38% in RNA 3, and 3.63% in RNA 6. In the intergenic regions, the two isolates differed by 9.12% in RNA 2, 11.6% in RNA 3, and 6.86% in RNA 6 with multiple consecutive nucleotide deletion/insertions, whereas they differed by only 0.78% in RNA 4 and 0.34% in RNA 5. The nucleotide variation in the intergenic region of RNA 6 within the South Cotabato isolate was only 0.33%. These differences in accumulation of mutations among individual RNA segments indicate that there was genetic reassortment in the two geographical isolates; RNAs 1, 4, and 5 of the two isolates came from a common ancestor, whereas RNAs 2, 3, and 6 were from two different ancestors.
Resumo:
This study examined the perceptual attunement of relatively skilled individuals to physical properties of striking implements in the sport of cricket. We also sought to assess whether utilising bats of different physical properties influenced performance of a specific striking action: the front foot straight drive. Eleven, skilled male cricketers (mean age = 16.6 ± 0.3 years) from an elite school cricket development programme consented to participate in the study. Whist blindfolded, participants wielded six bats exhibiting different mass and moment of inertia (MOI) characteristics and were asked to identify their three most preferred bats for hitting a ball to a maximum distance by performing a front foot straight drive (a common shot in cricket). Next, participants actually attempted to hit balls projected from a ball machine using each of the six bat configurations to enable kinematic analysis of front foot straight drive performance with each implement. Results revealed that, on first choice, the two bats with the smallest mass and MOI values (1 and 2) were most preferred by almost two-thirds (63.7%) of the participants. Kinematic analysis of movement patterns revealed that bat velocity, step length and bat-ball contact position measures significantly differed between bats. Data revealed how skilled youth cricketers were attuned to the different bat characteristics and harnessed movement system degeneracy to perform this complex interceptive action.
Resumo:
Identifying outstanding performers or ‘stars’ is a critical component of managing talent. However, organizational effectiveness in this area is limited by the current lack of guidance about the behaviour and characteristics of stars. We address this gap by combining a conceptual analysis with an empirical study involving 174 managers. Conceptually we examine the alignment of managers’ perceptions of outstanding performance with the well established task and contextual performance model and find this framework accounts for a core element in managers’ judgments about outstanding performers. However, a second, more qualitative approach finds that other dimensions including being self-directed, and a willingness to lead are also important. Our findings are consistent with a long-term trend toward identifying work effectiveness with highly discretionary, psychological and behavioural elements, and we consider the implications of this for the study and management of high level, individual effectiveness.
Resumo:
Rice ragged stunt virus (RRSV) is an important pathogen of rice affecting its cultivation in South and South East Asia. An approach based on pathogen derived resistance (PDR) was used to produce RRSV resistant rice cultivars. Sequences from the coding region of RRSV genome segments 7 and 10 (non-structural genes), and 5, 8 and 9 (structural genes) were placed in sense or antisense orientation behind the plant expression promoters CaMV35S, RolC, Ubil, Actl and RBTV. Rice cultivars Taipei 309 and Chinsurah Boro II were transformed by biolistic and/or Agrobacterium-mediated delivery of one or more of these PDR gene constructs. A large number of transgenic lines were produced from calli derived from mature or immature embryos, co-bombarded with the marker gene hph encoding hygromycin resistance and RRSV PDR genes or co-cultivated with strains having the binary vector containing these two genes. Both Mendelian and non-Mendelian segregations were observed in transgenic progeny, especially with transgenic lines produced by biolistics. Preliminary tests conducted in China on selected transgenic lines indicate that plants with RRSV segment 5 antisense PDR gene confer RRSV resistance.
Resumo:
The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.
Resumo:
The nucleotide sequences of genome segments S7 and S10 of a Thai-isolate of rice ragged stunt virus (RRSV) were determined. The 1938 bp S7 sequence contains a single large open reading frame (ORF) spanning nucleotides 20 to 1 843 that is predicted to encode a protein of M(r) 68 025. The 1 162 bp S10 sequence has a major ORF spanning nucleotides 142 to 1 032 that is predicted to encode a protein of M(r) 32364. This S10 ORF is preceded by a small ORF (nt 20-55) which is probably a minicistron. Coupled in vitro transcription-translation from the two major ORFs gave protein products of the expected sizes. However, no protein was visualised from S10 when the small ORF sequence was included. Proteins were expressed in Escherichia coli from the full length ORF of S7 (P7) and from a segment of the S10 ORF (P10) fused to the ORF of glutathione S-transferase (GST). Neither fusion protein was recognised by polyclonal antibodies raised against RRSV particles. Furthermore, polyclonal antibodies raised against GST-P7 fusion protein did not recognise any virion structural polypeptides. These data strongly suggest that the proteins P7 and P10 do not form part of RRSV particle. This is further supported by observed sequence homology (though very weak) of predicted.
Resumo:
The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.
Resumo:
The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.
Resumo:
Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.
Resumo:
Why would disabled people want to re-engage, re-enact and re-envisage the everyday encounters in public spaces and places that cast them as ugly, strange, stare-worthy? In Disability, Public Space Performance and Spectatorship: Unconscious Performers, Bree Hadley examines the performance practices of disabled artists in the US, UK, Europe and Australasia who do exactly this. Operating in a live or performance art paradigm, artists like James Cunningham (Australia), Noemi Lakmaier (UK/Austria), Alison Jones (UK), Aaron Williamson (UK), Katherine Araniello (UK), Bill Shannon (US), Back to Back Theatre (Australia), Rita Marcalo (UK), Liz Crow (UK) and Mat Fraser (UK) all use installation and public space performance practices to re-stage their disabled identities in risky, guerilla-style works that remind passersby of their own complicity in the daily social drama of disability. In doing so, they draw spectators' attention to their own role in constructing Western concepts of disability. This book investigates the way each of us can become unconscious performers in a daily social drama that positions disability people as figures of tragedy, stigma or pity, and the aesthetics, politics and ethics of performance practices that intervene very directly in this drama. It constructs a framework for understanding the way spectators are positioned in these practices, and how they contribute to public sphere debates about disability today.