993 resultados para Structural vibration
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
Application of piezoceramic materials in actuation and sensing of vibration is of current interest. Potential and more popular applications of piezoceramics are probably in the field of active vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores and discharges electrical energy that is transformed from the mechanical motion of the structure to which it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic. Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been investigated. Analytical studies are presented along with experimental results.
Resumo:
Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.
Resumo:
The present paper addresses the analysis of structural vibration transmission in the presence of structural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using finite element models. The numerical results obtained making use of this process are then compared with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that, even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency dependence. Comparison with results obtained by empirical formulas reveals that those of the standards cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary calculation procedures are required. A simple methodology to estimate the difference between numerical and standard predictions is here proposed allowing the calculation of an adaptation term that makes both approaches converge. This term was found to be solution-dependent, and thus should be evaluated for each structure.
Resumo:
In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.
Resumo:
The goal of this study is the multi-mode structural vibration control in the composite fin-tip of an aircraft. Structural model of the composite fin-tip with surface bonded piezoelectric actuators is developed using the finite element method. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes accurately. A model order reduction technique is employed for reducing the finite element structural matrices before developing the controller. Particle swarm based evolutionary optimization technique is used for optimal placement of piezoelectric patch actuators and accelerometer sensors to suppress vibration. H{infty} based active vibration controllers are designed directly in the discrete domain and implemented using dSpace® (DS-1005) electronic signal processing boards. Significant vibration suppression in the multiple bending modes of interest is experimentally demonstrated for sinusoidal and band limited white noise forcing functions.
Resumo:
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The active suppression of structural vibration is normally achieved by either feedforward or feedback control. In the absence of a suitable reference signal feedforward control cannot be employed and feedback control is the only viable approach. Conventional feedback control algorithms (e.g. LQR and LQG) are designed on the basis of a mathematical model of the system and ideally the performance of the system should be robust against uncertainties in this model. The aim of this paper is to numerically investigate the robustness of LQR and LQG algorithms by designing the controller for a nominal system, and then assessing (via Monte Carlo simulation) the effects of uncertainties in the system. The ultimate concern is with the control of high frequency vibrations, where the short wavelength of the structural deformation induces a high sensitivity to imperfection. It is found that standard algorithms such as LQR and LQG are generally unfeasible for this case. This leads to a consideration of design strategies for the robust active control of high frequency vibrations. The system chosen for the numerical simulation concerns two coupled plates, which are randomized by the addition of point masses at random locations.
Resumo:
This paper describes the problems in experimentally obtaining hydrodynamic loads on an oscillating wave surge converter during slamming events, with the aim of furthering understanding of full scale hydrodynamic loads that flap type devices must be designed to withstand. Including how hydro-elastic effects and structural response are linked and why they are essential to the measurement of impulsive hydrodynamic loads. A combined experimental and numerical structural response study carried out on a 40th scale Oyster model drew conclusions on the structural vibration observed in the strain gauge load cell measurement. A further structural response study on a piezo electric load measurement device gave an insight into the advantages it could bring to reducing hydro-elastic effects.
Resumo:
This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scramjet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (C) 2006 Elsevier SAS. All rights reserved.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.