990 resultados para Structural Types
Resumo:
Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)(3)(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)(3)(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)(3)] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)(3)] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)(3)]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90degrees, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The C2 domain is one of the most frequent and widely distributed calcium-binding motifs. Its structure comprises an eight-stranded beta-sandwich with two structural types as if the result of a circular permutation. Combining sequence, structural and modelling information, we have explored, at different levels of granularity, the functional characteristics of several families of C2 domains. At the coarsest level,the similarity correlates with key structural determinants of the C2 domain fold and, at the finest level, with the domain architecture of the proteins containing them, highlighting the functional diversity between the various subfamilies. The functional diversity appears as different conserved surface patches throughout this common fold. In some cases, these patches are related to substrate-binding sites whereas in others they correspond to interfaces of presumably permanent interaction between other domains within the same polypeptide chain. For those related to substrate-binding sites, the predictions overlap with biochemical data in addition to providing some novel observations. For those acting as protein-protein interfaces' our modelling analysis suggests that slight variations between families are a result of not only complementary adaptations in the interfaces involved but also different domain architecture. In the light of the sequence and structural genomic projects, the work presented here shows that modelling approaches along with careful sub-typing of protein families will be a powerful combination for a broader coverage in proteomics. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Four novel sesquiterpenes, namely 7alpha,8beta,13-trihydroxy-5,13-marasmanolide (2), isoplorantinone (5), 4,8,14-trihydroxyilludala-2,6,8-triene (6), and 8-hydroxy-8,9-secolactara-1,6-dien-5,13-olide (10), together with six known ones, 7alpha,8beta-dihydroxy-5,13-marasmanolide (1), 7alpha,8alpha-dihydroxy-5,13-marasmanolide (3), isolactarorufin (4), blennin A (7), blennin D (8), and lactarorufin (9), were isolated from the ethanolic extract of Lactarius piperatus. The structures of these sesquiterpenes, representing diversified structural types, were determined mainly by spectroscopic methods, especially 2D-NMR techniques. The structure of 6 was further confirmed by a single-crystal X-ray-diffraction determination.
Resumo:
Ao longo desta dissertação, é abordada a temática das obras de arte, focando-se um processo construtivo em particular, que é o Método de Lançamento Incremental. Começa-se por um enquadramento geral da temática das obras de arte, sendo feita a sua descrição, e faz-se uma síntese histórica dos materiais utilizados nas mesmas. De seguida, são apresentados os tipos de tabuleiros existentes e as tipologias estruturais das obras de arte. São mencionados ainda os processos e equipamentos construtivos que são utilizados na sua construção. É, de seguida, feita uma abordagem mais profunda ao processo construtivo alvo desta dissertação, nomeadamente questões de índole prática e de dimensionamento. É feita ainda uma aplicação prática, sendo feito um Estudo Prévio de uma solução para uma obra de arte executada com este processo construtivo. Termina-se indicando aspetos importantes na monitorização das obras de arte executadas pelo processo construtivo alvo desta dissertação, sendo ainda apresentadas as conclusões a que se chegou no final da mesma e possíveis desenvolvimentos futuros.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Civil
Resumo:
A rational method of search for natural neolignans of desired structures is outlined. This involves consultation of a collection of chemical profiles of plant families. The profiles are assembled considering the biosynthetic class (in the present case lignoids), subclass (neolignans), structural types (neolignan skeleta) and relative frequency of substitutional derivatives belonging to each type (known compounds). The method is of course applicable to ani class of natural products. Its use in the case of neolignans is here selected as an exemple in view of the recently discovered antagonism towards PAF of kadsurenone, a representative of this subclass of phytochemicals. Application of the chemical profiles to phylogenetic studies is illustrated.
Resumo:
Questions: Did the forest area in the Swiss Alps increase between 1985 and 1997? Does the forest expansion near the tree line represent an invasion into abandoned grasslands (ingrowth) or a true upward shift of the local tree line? What land cover / land use classes did primarily regenerate to forest, and what forest structural types did primarily regenerate? And, what are possible drivers of forest regeneration in the tree line ecotone, climate and/or land use change? Location: Swiss Alps. Methods: Forest expansion was quantified using data from the repeated Swiss land use statistics GEOSTAT. A moving window algorithm was developed to distinguish between forest ingrowth and upward shift. To test a possible climate change influence, the resulting upward shifts were compared to a potential regional tree line. Results: A significant increase of forest cover was found between 1650 to and 2450 m. Above 1650 m, 10% of the new forest areas were identified as true upward shifts whereas 90% represented ingrowth, and we identified both land use and climate change as likely drivers. Most upward shift activities were found to occur within a band of 300 m below the potential regional tree line, indicating land use as the most likely driver. Only 4% of the upward shifts were identified to rise above the potential regional tree line, thus indicating climate change. Conclusions: Land abandonment was the most dominant driver for the establishment of new forest areas, even at the tree line ecotone. However, a small fraction of upwards shift can be attributed to the recent climate warming, a fraction that is likely to increase further if climate continues to warm, and with a longer time-span between warming and measurement of forest cover.
Resumo:
In evaluation of soil quality for agricultural use, soil structure is one of the most important properties, which is influenced not only by climate, biological activity, and management practices but also by mechanical and physico-chemical forces acting in the soil. The purpose of this study was to evaluate the influence of conventional agricultural management on the structure and microstructure of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) in an experimental area planted to maize. Soil morphology was described using the crop profile method by identifying the distinct structural volumes called Morphologically Homogeneous Units (MHUs). For comparison, we also described a profile in an adjacent area without agricultural use and under natural regrowth referred to as Memory. We took undisturbed samples from the main MHUs so as to form thin sections and blocks of soil for micromorphological and micromorphometrical analyses. Results from the application of the crop profile method showed the occurrence of the following structural types: loose (L), fragmented (F) and continuous (C) in both profiles analyzed. In the Memory soil profile, the fragmented structures were classified as Fptμ∆+tf and Fmt∆μ, whose micromorphology shows an enaulic-porphyric (porous) relative distribution with a great deal of biological activity as indicated by the presence of vughs and channels. Lower down, from 0.20 to 0.35 m, there was a continuous soil volume (sub-type C∆μ), with a subangular block microstructure and an enaulic-porphyric relative distribution, though in this case more compact and with aggregate coalescence and less biological activity. The micromorphometrical study of the soil of the Memory Plot showed the predominance of complex pores in NAM (15.03 %), Fmt∆μ (11.72 %), and Fptμ∆+tf (7.73 %), and rounded pores in C∆μ (8.21 %). In the soil under conventional agricultural management, we observed fragmented structures similar to the Memory Plot from 0.02 to 0.20 m, followed by a volume with a compact continuous structure (C∆μ), without visible porosity and with few roots. In the MHUs under conventional management, reduction in the packing pores (40 %) was observed, mainly in the continuous units (C). The microstructure had well-defined blocks, with the occurrence of planar pores and less evidence of biological activity. In conclusion, the morphological and micromorphological analyses of the soil profiles studied offered complementary information regarding soil structural quality, especially concerning the changes in pore types as result of mechanical stress undergone by the soil.
Synthesis of Chiral Benzimidazolylidenes from 1,10-Phenathrolines and 1,10-Phenathroline-2,9-dione /
Resumo:
A^-heterocyclic carbenes (NHCs) have become the focus of much interest as ancillary ligands for transition metal catalysts in recent years. Their structural variability and strong cy-donation properties have led to the preparation of demonstrably useful organometallic catalysts. Among the three general structural types of NHCs (imidazolylidenes, imidazolinylidenes, and benzimidazolylidenes), benzimidazolylidenes are the least investigated because of the limitation of current synthetic approaches. The preparation of chiral analogues is even more challenging. Previously, our group has demonstrated an alternative approach to synthesizing benzimidazolylidenes with a tetracyclic framework in three steps from 1,10-phenanthroline. This thesis is focused on approaches to chiral benzimidazolylidenes derived from substituted 1,10-phenanthrolines. A key step in the preparation of these ligands involves a reduction of the pyridyl rings in 1,10-phenanthrolines. Chirality can be introduced to phenanthrolines before, during, or after the reduction as illustrated by three approaches: 1) de novo construction of the phenanthroline from chiral ketones with endo and exo faces to provide a degree of diastereoselectivity during subsequent reduction; 2) introduction of substituents into the 2- and 2,9- position of phenanthroline by nucleophilic aromatic substitution, followed by a reduction-resolution sequence; and 3) use of the protected octahydrophenanthroline as a substrate for chiral induction a to nitrogen.
Resumo:
The ability of new hydrophobic tridentate ligands based on 2,6-bis(benziinidazol-2-yl)pyridine, 2,6-bis(benzoxazol-2-yl)pyridine and 2,6-bis(benzothiazol-2-yl)pyridine to selectively extract americium(III) from europium(III) was measured. The most promising ligand-2,6-bis(benzoxazol-2-yl)-4-(2-decyl-1-tetradecyloxy)pyridine L-9 was found to give separation factors (SFAm/Eu) of up to 70 when used to extract cations from 0.02-0.10 M HNO3 into TPH in synergy with 2-bromodecanoic acid. Six structures of lanthanide complexes with 2,6-bis(benzoxazol-2-yl)pyridine L-6 were then determined to evaluate the types of species that are likely to be involved in the separation process. Three structural types were observed, namely [LnL(6)(NO3)(3)(H2O)2], 11-coordinate only for La, [LnL(6) (NO3)(3) (CH3CN)], 10-coordinate for Pr, Nd and Eu and [LnL(6) (NO3)(3)(H2O)], L 10-coordinate for Eu and Gd. Quantum Mechanics calculations were carried out on the tridentate ligands to elucidate the conformational preferences of the ligands in the free state and protonated and diprotonated forms and to assess the electronic properties of the ligands for comparison with other terdentate ligands used in lanthanide/actinide separation processes.
Resumo:
Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).
Resumo:
Here we study the effect of point mutations in proteins on the redistributions of the conformational substates. We show that regardless of the location of a mutation in the protein structure and of its type, the observed movements of the backbone recur largely at the same positions in the structures. Despite the different interactions that are disrupted and formed by the residue substitution, not only are the conformations very similar, but the regions that move are also the same, regardless of their sequential or spatial distance from the mutation. This observation leads us to conclude that, apart from some extreme cases, the details of the interactions are not critically important in determining the protein conformation or in specifying which parts of the protein would be more prone to take on different local conformations in response to changes in the sequence. This finding further illustrates why proteins manifest a robustness toward many mutational events. This nonuniform distribution of the conformer population is consistently observed in a variety of protein structural types. Topology is critically important in determining folding pathways, kinetics, building block cutting, and anatomy trees. Here we show that topology is also very important in determining which regions of the protein structure will respond to sequence changes, regardless of the sequential or spatial location of the mutation.
Resumo:
Um modelo dedicado ao planejamento da conservação e restauração de habitats deve incluir informações estratégicas para assegurar a eficácia e de fácil obtenção, para assegurar a agilidade necessária. Planos e estratégias para conservação usualmente são complexos e demandam informações detalhadas, difíceis de se obter, como inventários biológicos e certos tipos de mapeamento, o que traz limitações em termos de disponibilidade, qualidade e custo das informações. Assim, procurou-se testar a eficiência de métodos simples para a seleção, em escala local, de áreas prioritárias para conservação de habitats fortemente fragmentados e reduzidos, uma situação comum no sul do Brasil, usando dados de imagens LANDSAT e planos de informações disponíveis em mapeamentos comuns, e trabalho de campo. Inicialmente analisou-se a estrutura da paisagem e o padrão de fragmentação em parte da região norte do estado do Paraná, e testar se tamanho e forma são adequados para selecionar os fragmentos florestais mais importantes para a conservação, ou seja, as que contribuem para manter maior quantidade e melhor qualidade de habitats, bem como tenham maior impacto (positivo) na conectividade e em outras variáveis da paisagem. Os resultados mostram que a floresta madura cobre cerca de 3% da paisagem, e a cobertura florestal total atinge perto de 8%, consistindo principalmente de pequenos fragmentos (82% tem entre 1 e 10 ha). Fragmentos grandes (>100 ha) são apenas 1,4% dos remanescentes, mas somam 34% da área de floresta. Apesar de estarem sujeitos a efeitos de borda em toda ou quase toda a sua área, fragmentos pequenos mostraram ter um papel importante na conectividade da paisagem. Numa área maior, foi feita uma pré-seleção de áreas com potencial para estabelecimento de redes de conservação. A pré-seleção procurou responder às seguintes perguntas: 1-Quais são os sítios com maior potencial para a conservação da biodiversidade? 2-Quais são os sítios sob maior risco para objetivos de conservação? e 3-Quais sítios têm melhores oportunidades para o estabelecimento de zonas de conservação de uso múltiplo? Foi identificado um conjunto de 11 fragmentos pertencendo a 5 sub-regiões, sofrendo variados graus de pressão antrópica. Adicionalmente, usando medidas simples de estrutura da paisagem, relacionadas com tamanho, forma e conectividade dos fragmentos, procurou-se identificar tipos estruturais de fragmentos, como uma forma alternativa para auxiliar o estabelecimento de prioridades para conservação a partir do seu papel, efetivo ou potencial, na paisagem. Foram identificados 5 tipos de fragmentos, pequenos (ilhotas isoladas, trampolins), médios (núcleos auxiliares e corredores) e grandes (núcleos principais), que podem ser usados para subsidiar estratégias de conservação. Utilizando informações sobre a estrutura da paisagem, hidrografia e legislação ambiental, propõe-se aqui uma estratégia de conservação para o complexo das bacias dos ribeirões Apertados-Três Bocas (CATB), ordenando atividades de restauração e conservação de fragmentos florestais, criação e expansão de unidades de conservação, além da proposição de formas de uso do solo compatíveis com o entorno de unidades de conservação.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.