984 resultados para Structural MRI
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
We present an intuitive geometric approach for analysing the structure and fragility of T1-weighted structural MRI scans of human brains. Apart from computing characteristics like the surface area and volume of regions of the brain that consist of highly active voxels, we also employ Network Theory in order to test how close these regions are to breaking apart. This analysis is used in an attempt to automatically classify subjects into three categories: Alzheimer’s disease, mild cognitive impairment and healthy controls, for the CADDementia Challenge.
Resumo:
Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.
Resumo:
The presence of cognitive impairment is a frequent complaint among elderly individuals in the general population. This study aimed to investigate the relationship between aging-related regional gray matter (rGM) volume changes and cognitive performance in healthy elderly adults. Morphometric magnetic resonance imaging (MRI) measures were acquired in a community-based sample of 170 cognitively-preserved subjects (66 to 75 years). This sample was drawn from the "Sao Paulo Ageing and Health" study, an epidemiological study aimed at investigating the prevalence and risk factors for Alzheimer's disease in a low income region of the city of Sao Paulo. All subjects underwent cognitive testing using a cross-culturally battery validated by the Research Group on Dementia 10/66 as well as the SKT (applied on the day of MRI scanning). Blood genotyping was performed to determine the frequency of the three apolipoprotein E allele variants (APOE epsilon 2/epsilon 3/epsilon 4) in the sample. Voxelwise linear correlation analyses between rGM volumes and cognitive test scores were performed using voxel-based morphometry, including chronological age as covariate. There were significant direct correlations between worse overall cognitive performance and rGM reductions in the right orbitofrontal cortex and parahippocampal gyrus, and also between verbal fluency scores and bilateral parahippocampal gyral volume (p < 0.05, familywise-error corrected for multiple comparisons using small volume correction). When analyses were repeated adding the presence of the APOE epsilon 4 allele as confounding covariate or excluding a minority of APOE epsilon 2 carriers, all findings retained significance. These results indicate that rGM volumes are relevant biomarkers of cognitive deficits in healthy aging individuals, most notably involving temporolimbic regions and the orbitofrontal cortex.
Resumo:
Volume reduction and functional impairment in areas of the prefrontal cortex (PFC) have been found in borderline personality disorder (BPD), particularly in patients with a history of childhood abuse. These abnormalities may contribute to the expression of emotion dysregulation and aggressiveness. In this study we investigated whether the volume of the PFC is reduced in BPD patients and whether a history of childhood abuse would be associated with greater PFC structural changes. Structural MRI data were obtained from 18 BPD patients and 19 healthy individuals matched for age, sex, handedness, and education and were analyzed using voxel based morphometry. The Child Abuse Scale was used to elicit a past history of abuse; aggression was evaluated using the Buss-Durkee Hostility Inventory (BDHI). The volume of the right ventrolateral PFC (VLPFC) was significantly reduced in BPD subjects with a history of childhood abuse compared to those without this risk factor. Additionally, right VLPFC gray matter volume significantly correlated with the BDHI total score and with BDHI irritability and negativism subscale scores in patients with a history of childhood abuse. Our results suggest that a history of childhood abuse may lead to increased aggression mediated by an impairment of the right VLPFC. © 2013 Elsevier Ireland Ltd.
Resumo:
Because brain structure and function are affected in neurological and psychiatric disorders, it is important to disentangle the sources of variation in these phenotypes. Over the past 15 years, twin studies have found evidence for both genetic and environmental influences on neuroimaging phenotypes, but considerable variation across studies makes it difficult to draw clear conclusions about the relative magnitude of these influences. Here we performed the first meta-analysis of structural MRI data from 48 studies on >1,250 twin pairs, and diffusion tensor imaging data from 10 studies on 444 twin pairs. The proportion of total variance accounted for by genes (A), shared environment (C), and unshared environment (E), was calculated by averaging A, C, and E estimates across studies from independent twin cohorts and weighting by sample size. The results indicated that additive genetic estimates were significantly different from zero for all metaanalyzed phenotypes, with the exception of fractional anisotropy (FA) of the callosal splenium, and cortical thickness (CT) of the uncus, left parahippocampal gyrus, and insula. For many phenotypes there was also a significant influence of C. We now have good estimates of heritability for many regional and lobar CT measures, in addition to the global volumes. Confidence intervals are wide and number of individuals small for many of the other phenotypes. In conclusion, while our meta-analysis shows that imaging measures are strongly influenced by genes, and that novel phenotypes such as CT measures, FA measures, and brain activation measures look especially promising, replication across independent samples and demographic groups is necessary.
Resumo:
Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (PMA = 4. 79 × 10-8). This commonly-carried genetic variant accounted for 2. 68 % and 0. 84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
Understanding the aetiology of patterns of variation within and covariation across brain regions is key to advancing our understanding of the functional, anatomical and developmental networks of the brain. Here we applied multivariate twin modelling and principal component analysis (PCA) to investigate the genetic architecture of the size of seven subcortical regions (caudate nucleus, thalamus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens) in a genetically informative sample of adolescents and young adults (N=1038; mean age=21.6±3.2years; including 148 monozygotic and 202 dizygotic twin pairs) from the Queensland Twin IMaging (QTIM) study. Our multivariate twin modelling identified a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In addition, we also found substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52). This provides further insight into the extent and organization of subcortical genetic architecture, which includes developmental and general growth pathways, as well as the functional specialization and maturation trajectories that influence each subcortical region. This multivariate twin study identifies a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In parallel, it also describes substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52).
Resumo:
The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.
Resumo:
A neuroanatomical parcellation system is described which encompasses the entire cerebral cortex and the cerebellum. The cortical system modified version of the scheme described by Caviness et al. (1996) and is designed particularly for studies of speech processing. The cerebellum is parcellated into 6 cortical regions of interest (ROIs) and an ROI representing the deep cerebellar nuclei in each hemisphere. The boundaries of each ROI are based on individual anatomical markers that are clearly visible from standard structural MRI acquistions. The system permits averaginh of functional imaging data sets from multiple sujects while accounting for individual anatomical variability. Used in conjuction with region-of-interest analysis techniques such as that described by Nieto-Castanon et al. (2003), the parcellation system provides a more powerful means of analyzing functional data.
Resumo:
Mild traumatic brain injury (TBI) is a common source of morbidity from the wars in Iraq and Afghanistan. With no overt lesions on structural MRI, diagnosis of chronic mild TBI in military veterans relies on obtaining an accurate history and assessment of behavioral symptoms that are also associated with frequent comorbid disorders, particularly posttraumatic stress disorder (PTSD) and depression. Military veterans from Iraq and Afghanistan with mild TBI (n = 30) with comorbid PTSD and depression and non-TBI participants from primary (n = 42) and confirmatory (n = 28) control groups were assessed with high angular resolution diffusion imaging (HARDI). White matter-specific registration followed by whole-brain voxelwise analysis of crossing fibers provided separate partial volume fractions reflecting the integrity of primary fibers and secondary (crossing) fibers. Loss of white matter integrity in primary fibers (P < 0.05; corrected) was associated with chronic mild TBI in a widely distributed pattern of major fiber bundles and smaller peripheral tracts including the corpus callosum (genu, body, and splenium), forceps minor, forceps major, superior and posterior corona radiata, internal capsule, superior longitudinal fasciculus, and others. Distributed loss of white matter integrity correlated with duration of loss of consciousness and most notably with "feeling dazed or confused," but not diagnosis of PTSD or depressive symptoms. This widespread spatial extent of white matter damage has typically been reported in moderate to severe TBI. The diffuse loss of white matter integrity appears consistent with systemic mechanisms of damage shared by blast- and impact-related mild TBI that involves a cascade of inflammatory and neurochemical events. © 2012 Wiley Periodicals, Inc.
Resumo:
Very-low-birthweight (VLBW) individuals are at high risk of brain injury in the perinatal period. We wished to determine how such early brain lesions affect brain structure in adulthood. Thirty-two VLBW adults (20 female, 12 male) and, 18 term, normal birthweight sibling control individuals (nine female, nine male) underwent structural MRI at a mean age of 23 years 4 months (range 17 to 33 years; SD 3.4). Images were analyzed using an automated tissue segmentation algorithm in order to estimate whole brain tissue class volumes in native space. Images were then warped to a template image in standard space. There was no significant between-group difference in whole brain, greymatter, white matter, or total cerebral spinal fluid (CSF) volumes. However, lateral ventricular volume was significantly increased by 41% in those with VLBW. The ratio of grey to white matter was also significantly increased (by 10%) in those with VLBW. Group comparison maps showed widespread changes in the distribution of grey and white matter, and relative excess of ventricular CSF, in the brains of VLBW individuals. Increased ventricular volume predicted decreased grey matter in subcortical nuclei and limbic cortical structures, and decreased periventricular white matter. We conclude that these diffuse abnormalities of grey and white matter are a consequence,of the interaction of perinatal brain injury and ongoing neurodevelopmental processes.