942 resultados para Strongly acidic cation exchange resin
Resumo:
Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided
Resumo:
This paper describe a Ru(bpy)(3)(2+) based electrochemiluminescence (ECL) method to detect procyclidine in human urine following separation by capillary electrophoresis (CE). An ECL detection cell was designed for post-column addition of Ru(bpy)(3)(2+). Parameters affecting separation and detection were optimized, leading to a detection limit of 1 x 10(-9) mol/l in an on-capillary stacking mode. For application in urine, a cartridge packed with slightly acidic cation-exchange resin was used to eliminate the matrix effects of urine and improve the detection sensitivity. Extraction recovery was nearly 90%.
Resumo:
This dissertation presents the development of voltammetric methods to zinc determination in multivitamin commercial samples, talc, and art materials for painting (soft pastel) combining an alkaline extraction with 1.0 mol L-1 NaOH aqueous solution and bismuth modified electrodes. Two electrodes were used to zinc quantification in the samples, bismuth film electrode (BiFE) plated in situ onto glassy carbon and carbon paste electrode chemically modified with strongly acidic ion exchange resin Amberlite® IR 120 and bismuth nanostructures (EPCAmbBi). It was verified that the best concentration of Bi3+ for Bi film deposition onto glassy carbon was 4.0 μmol L-1 using an 0.1 mol L-1 acetate buffer aqueous solution (pH = 4.5) as supporting electrolyte. The best condition to formation of Bi nanostructures in the EPC modified with 10 % Amberlite® IR 120 was the use of 30 s to pre-concentration (open circuit) in 0.5 mmol L-1 Bi3+ aqueous solution (pH 5.5) prepared with supporting electrolyte solution. The obtained analytical curve for Zn2+ using BiFE presented linear range from 0.5 to 5.0 μmol L-1, the limit of detection (LD) was 41 nmol L-1. For EPCAmbBi only one linear range was observed for the analytical curve varying the Zn2+ concentration from 0.05 to 8.2 μmol L-1, LD obtained in this curve it was equal to 10 nmol L-1. The EPCAmbBi presented the most intense and sharp anodic stripping peaks for Zn2+ presenting, therefore, a better voltammetric profile, with sensitivity higher than obtained with the BiFE. Moreover, the EPCAmbBi presented a LD lower than that obtained with the BiFE. Alkaline extraction was an efficient sample pretreatment to extract Zn2+ from solid samples, besides that, this procedure was less susceptible to interferences from Cu2+, since it remains at extracting vessel as insoluble Cu(OH)2. The combination of alkaline extraction with the EPCAmbBi is a simple, fast, efficient and low cost for the zinc determination in pharmaceutical formulations and art materials for painting (soft pastel) samples, which can be employed as a low-cost alternative method to the atomic absorption spectroscopy.
Resumo:
Adsorption and regeneration of ion exchange resins were studied using a subcritical solution of a CO2-H2O mixture and a fixed bed column. The commercial Amberlite IRC-50/IRC-86 cation exchange resins and Amberlite IRA-67 anion exchange resin were tested for heavy metals (Pb, Cu, Cd) adsorption from a solution with different initial metal concentrations at different temperatures. After adsorption, the loaded resins were regenerated with water and carbon dioxide at different temperatures and a pressure of 25 MPa. The efficiency of the IRC-50 resin was lower than that of the IRC-86 resin for the adsorption of metals like Cd, Cu and Pb. Results obtained for desorption of these metals indicated that the process could be used for Cd and in principle for Cu. Sorption of metal ions depended strongly on feed concentration. Mathematical modeling of the metal desorption process was carried out successfully as an extraction process. For this purpose, the VTII Model, which is applied to extraction from solids using supercritical solvents, was used in this work.
Resumo:
Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.
Resumo:
A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.
Resumo:
In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Lactoperoxidase (LP) was isolated from whey protein by cation-exchange using Carboxymethyl resin (CM-25C) and Sulphopropyl Toyopearl resin (SP-650C). Both batch and column procedures were employed and the adsorption capacities and extraction efficiencies were compared. The resin bed volume to whey volume ratios were 0.96:1.0 for CM-25C and ≤ 0.64:1.0 for SP-650 indicating higher adsorption capacity of SP-650 compared to CM-25C. The effluent LP activity depended on both the enzyme activity in the whey and the amount of whey loaded on the column within the saturation limits of the resin. The percentage recovery was high below the saturation point and fell off rapidly with over-saturation. While effective recovery was achieved with column extraction procedures, the recovery was poor in batch procedures. The whey-resin contact time had little impact on the enzyme adsorption. SDS PAGE and HPLC analyses were also carried out, the purity was examined and the proteins characterised in terms of molecular weights. Reversed phase HPLC provided clear distinction of the LP and lactoferrin (LF) peaks. The enzyme purity was higher in column effluents compared to batch effluents, judged on the basis of the clarity of the gel bands and the resolved peaks in HPLC chromatograms.
Resumo:
Experiments were carried out on the sodium hypochlorite bleach sensitivity of a deep subsurface andesitic reservoir in order to predict possible deleterious mineral transformations during a downhole clean-up job. Experiments involved examination of core samples from the reservoir using an Environmental Scanning Electron Microscope (ESEM) with an attached Energy Dispersive Spectrometer (EDS) before and after the samples were immersed in bleach. Bleach immersion of whole-rock samples resulted in rapid (less than 1 min) precipitation of abundant 3.0-10.0-μm-wide calcite rhombs within clay-associated micropores and on clay and feldspar grain surfaces. Abundant microporefilling calcite rhombs also formed in pure separates of constituent chlorite/corrensite, whereas no calcite formed in a pure separate of constituent zeolite. These experiments indicate that corrensite is the likely calcium source in this experimental fluid-rock system. Formation of calcite occurs via a cation exchange reaction in which calcium in the smectitic interlayers of corrensite exchanges for sodium in the bleach. Serious formation damage due to calcite precipitation would have occurred in the andesite reservoir had it been exposed to bleach. This finding gives credence to earlier suggestions that cation exchange reactions have the potential to cause calcite precipitation in some sandstone reservoirs when exposed to drilling, completion or stimulation fluids. © 1993.
Resumo:
Amelioration of sodic soils is commonly achieved by applying gypsum, which increases soil hydraulic conductivity by altering soil chemistry. The magnitude of hydraulic conductivity increases expected in response to gypsum applications depends on soil properties including clay content, clay mineralogy, and bulk density. The soil analyzed in this study was a kaolinite rich sodic clay soil from an irrigated area of the Lower Burdekin coastal floodplain in tropical North Queensland, Australia. The impact of gypsum amelioration was investigated by continuously leaching soil columns with a saturated gypsum solution, until the hydraulic conductivity and leachate chemistry stabilized. Extended leaching enabled the full impacts of electrolyte effects and cation exchange to be determined. For the columns packed to 1.4 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.41 ± 0.06 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 4.3 ± 2.12 mEq/100 g, and hydraulic conductivity increased to 0.15 ± 0.04 cm/d. For the columns packed to 1.3 g/cm3, exchangeable sodium concentrations were reduced from 5.0 ± 0.5 mEq/100 g to 0.51 ± 0.03 mEq/100 g, exchangeable magnesium concentrations were reduced from 13.9 ± 0.3 mEq/100 g to 0.55 ± 0.36 mEq/100 g, and hydraulic conductivity increased to 0.96 ± 0.53 cm/d. The results of this study highlight that both sodium and magnesium need to be taken into account when determining the suitability of water quality for irrigation of sodic soils and that soil bulk density plays a major role in controlling the extent of reclamation that can be achieved using gypsum applications.
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
The feasibility of biodiesel production from soapstock containing high water content and fatty matters by a solid acid catalyst was investigated. Soapstock was converted to high-acid acid oil (HAAO) by the hydrolysis by KOH and the acidulation by sulfuric acid. The acid value of soapstock-HAAO increased to 199.1 mg KOH/g but a large amount of potassium sulfate was produced. To resolve the formation of potassium sulfate, acid oil was extracted from soapstock and was converted to HAAO by using sodium dodecyl benzene sulfonate (SDBS). The maximum acid value of acid oil-HAAO was 194.2 mg KOH/g when the mass ratio of acid oil, sulfuric acid, and water was 10:4:10 at 2% of SDBS. In the esterification of HAAO using Amberylst-15, fatty acid methyl ester (FAME) concentration was 91.7 and 81.3% for soapstock and acid oil, respectively. After the distillation, FAME concentration became 98.1% and 96.7% for soapstock and acid oil. The distillation process decreased the total glycerin and the acid value of FAME produced a little.
Resumo:
A pressurized capillary electrochromatography (pCEC) instrument with solvent gradient capability has been used for the separation of a peptide mixture. Retention mechanism and selectivity of the peptides were studied by pCEC using a strong cation exchange (SCX) column. The effects of applied voltage, supplementary pressure, organic modifier concentration, ionic strength,, and pH value on pCEC separation were investigated. It was found that the retention mechanism of the peptides in this system is based on a mixed mode of hydrophilic interaction, strong cation exchange, and electrophoresis. Compared with the separation results obtained by reverse phase pCEC and capillary electrophoresis (CE), this mixed-mode pCEC is more powerful for the separation of hydrophilic peptides with similar charge-to-mass ratio.
Resumo:
N-Methylimidazolium functionalized strongly basic anion exchange resins in the Cl- form (RCI) and SO46- form (R2SO4) were synthesized and employed for adsorption of Cr(VI) from aqueous solution. FT-IR and elementary analysis proved the structures of anion exchange resins and the content of functional groups. The gel-type strongly basic anion exchange resins had high thermal stability according to TGA and good chemical stability under the experimental conditions. The adsorption behaviors of Cr(VI) on RCI and R2SO4 were studied using the batch technique. It was shown that adsorption equilibrium was reached rapidly within 60 min. The adsorption data for RCI and R2SO4 were consistent with the Langmuir isotherm equation.