918 resultados para Strongly Semantic Information


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Other

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SIR is a computer system, programmed in the LISP language, which accepts information and answers questions expressed in a restricted form of English. This system demonstrates what can reasonably be called an ability to "understand" semantic information. SIR's semantic and deductive ability is based on the construction of an internal model, which uses word associations and property lists, for the relational information normally conveyed in conversational statements. A format-matching procedure extracts semantic content from English sentences. If an input sentence is declarative, the system adds appropriate information to the model. If an input sentence is a question, the system searches the model until it either finds the answer or determines why it cannot find the answer. In all cases SIR reports its conclusions. The system has some capacity to recognize exceptions to general rules, resolve certain semantic ambiguities, and modify its model structure in order to save computer memory space. Judging from its conversational ability, SIR, is a first step toward intelligent man-machine communication. The author proposes a next step by describing how to construct a more general system which is less complex and yet more powerful than SIR. This proposed system contains a generalized version of the SIR model, a formal logical system called SIR1, and a computer program for testing the truth of SIR1 statements with respect to the generalized model by using partial proof procedures in the predicate calculus. The thesis also describes the formal properties of SIR1 and how they relate to the logical structure of SIR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers currently debate whether new semantic knowledge can be learned and retrieved despite extensive damage to medial temporal lobe (MTL) structures. The authors explored whether H. M., a patient with amnesia, could acquire new semantic information in the context of his lifelong hobby of solving crossword puzzles. First, H. M. was tested on a series of word-skills tests believed important in solving crosswords. He also completed 3 new crosswords: 1 puzzle testing pre-1953 knowledge, another testing post-1953 knowledge, and another combining the 2 by giving postoperative semantic clues for preoperative answers. From the results, the authors concluded that H. M. can acquire new semantic knowledge, at least temporarily, when he can anchor it to mental representations established preoperatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though the digital processing of documents is increasingly widespread in industry, printed documents are still largely in use. In order to process electronically the contents of printed documents, information must be extracted from digital images of documents. When dealing with complex documents, in which the contents of different regions and fields can be highly heterogeneous with respect to layout, printing quality and the utilization of fonts and typing standards, the reconstruction of the contents of documents from digital images can be a difficult problem. In the present article we present an efficient solution for this problem, in which the semantic contents of fields in a complex document are extracted from a digital image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Weak senses' are a specific type of semantic information as opposed to assertions and presuppositions. The universal trait of weak senses is that they assume 'if' modality in negative contexts. In addition they exhibit several other diagnostic properties, e.g. they fill at least one of their valency places with a semantic element sensitive to negation (i.e. with an assertion or other weak sense), they normally do not fall within the scope of functors, do not play any role in causal relations, and resist intensification. As weak senses are widespread in lexical, grammatical and referential semantics, this notion holds the clue to phenomena as diverse as the oppositions little - a little, few - a few, edva ('hardly') - cut' ('slightly), where a little, a few, cut, convey 'weakly' approximately what little, few, and edva do in an assertive way, the semantics of the Russian perfect aspect, and the formation rules for conjunction strings. Zeldovich outlines a typology of weak senses, the main distinction being between weak senses unilaterally dependent upon the truthfulness of what they saturate their valency with, and weak senses exerting their own influence on the main situation. The latter, called, non-trivial, are instantiated by existential quantifiers involved in the semantics of indefinite pronouns, iterative verbs, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing theories of semantic cognition propose models of cognitive processing occurring in a conceptual space, where ‘meaning’ is derived from the spatial relationships between concepts’ mapped locations within the space. Information visualisation is a growing area of research within the field of information retrieval, and methods for presenting database contents visually in the form of spatial data management systems (SDMSs) are being developed. This thesis combined these two areas of research to investigate the benefits associated with employing spatial-semantic mapping (documents represented as objects in two- and three-dimensional virtual environments are proximally mapped dependent on the semantic similarity of their content) as a tool for improving retrieval performance and navigational efficiency when browsing for information within such systems. Positive effects associated with the quality of document mapping were observed; improved retrieval performance and browsing behaviour were witnessed when mapping was optimal. It was also shown using a third dimension for virtual environment (VE) presentation provides sufficient additional information regarding the semantic structure of the environment that performance is increased in comparison to using two-dimensions for mapping. A model that describes the relationship between retrieval performance and browsing behaviour was proposed on the basis of findings. Individual differences were not found to have any observable influence on retrieval performance or browsing behaviour when mapping quality was good. The findings from this work have implications for both cognitive modelling of semantic information, and for designing and testing information visualisation systems. These implications are discussed in the conclusions of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper outlines a novel approach for modelling semantic relationships within medical documents. Medical terminologies contain a rich source of semantic information critical to a number of techniques in medical informatics, including medical information retrieval. Recent research suggests that corpus-driven approaches are effective at automatically capturing semantic similarities between medical concepts, thus making them an attractive option for accessing semantic information. Most previous corpus-driven methods only considered syntagmatic associations. In this paper, we adapt a recent approach that explicitly models both syntagmatic and paradigmatic associations. We show that the implicit similarity between certain medical concepts can only be modelled using paradigmatic associations. In addition, the inclusion of both types of associations overcomes the sensitivity to the training corpus experienced by previous approaches, making our method both more effective and more robust. This finding may have implications for researchers in the area of medical information retrieval.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex numbers are a fundamental aspect of the mathematical formalism of quantum physics. Quantum-like models developed outside physics often overlooked the role of complex numbers. Specifically, previous models in Information Retrieval (IR) ignored complex numbers. We argue that to advance the use of quantum models of IR, one has to lift the constraint of real-valued representations of the information space, and package more information within the representation by means of complex numbers. As a first attempt, we propose a complex-valued representation for IR, which explicitly uses complex valued Hilbert spaces, and thus where terms, documents and queries are represented as complex-valued vectors. The proposal consists of integrating distributional semantics evidence within the real component of a term vector; whereas, ontological information is encoded in the imaginary component. Our proposal has the merit of lifting the role of complex numbers from a computational byproduct of the model to the very mathematical texture that unifies different levels of semantic information. An empirical instantiation of our proposal is tested in the TREC Medical Record task of retrieving cohorts for clinical studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.