789 resultados para Strong Fuzzy Negations
Resumo:
* This work is partially supported by CICYT (Spain) under project TIN 2005-08943-C02-001 and by UPM-CAM (Spain) under project R05/11240.
Resumo:
In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper.
Resumo:
For inference purposes in both classical and fuzzy logic, neither the information itself should be contradictory, nor should any of the items of available information contradict each other. In order to avoid these troubles in fuzzy logic, a study about contradiction was initiated by Trillas et al. in [5] and [6]. They introduced the concepts of both self-contradictory fuzzy set and contradiction between two fuzzy sets. Moreover, the need to study not only contradiction but also the degree of such contradiction is pointed out in [1] and [2], suggesting some measures for this purpose. Nevertheless, contradiction could have been measured in some other way. This paper focuses on the study of contradiction between two fuzzy sets dealing with the problem from a geometrical point of view that allow us to find out new ways to measure the contradiction degree. To do this, the two fuzzy sets are interpreted as a subset of the unit square, and the so called contradiction region is determined. Specially we tackle the case in which both sets represent a curve in [0,1]2. This new geometrical approach allows us to obtain different functions to measure contradiction throughout distances. Moreover, some properties of these contradiction measure functions are established and, in some particular case, the relations among these different functions are obtained.
Resumo:
The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.
Resumo:
The main aim of this investigation is to propose the notion of uniform and strong primeness in fuzzy environment. First, it is proposed and investigated the concept of fuzzy strongly prime and fuzzy uniformly strongly prime ideal. As an additional tool, the concept of t/m systems for fuzzy environment gives an alternative way to deal with primeness in fuzzy. Second, a fuzzy version of correspondence theorem and the radical of a fuzzy ideal are proposed. Finally, it is proposed a new concept of prime ideal for Quantales which enable us to deal with primeness in a noncommutative setting.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolative and extrapolative reasoning: a practical approach. IEEE Transactions on Fuzzy Systems, 16(1):13-28, 2008.
Resumo:
We consider the problem of building robust fuzzy extractors, which allow two parties holding similar random variables W, W' to agree on a secret key R in the presence of an active adversary. Robust fuzzy extractors were defined by Dodis et al. in Crypto 2006 [6] to be noninteractive, i.e., only one message P, which can be modified by an unbounded adversary, can pass from one party to the other. This allows them to be used by a single party at different points in time (e.g., for key recovery or biometric authentication), but also presents an additional challenge: what if R is used, and thus possibly observed by the adversary, before the adversary has a chance to modify P. Fuzzy extractors secure against such a strong attack are called post-application robust. We construct a fuzzy extractor with post-application robustness that extracts a shared secret key of up to (2m−n)/2 bits (depending on error-tolerance and security parameters), where n is the bit-length and m is the entropy of W . The previously best known result, also of Dodis et al., [6] extracted up to (2m − n)/3 bits (depending on the same parameters).
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Este trabalho estuda a técnica de acionamento vetorial aplicado ao motor de indução trifásico (MIT), utilizando como estratégia de controle a combinação de controle fuzzy com controladores chaveados do tipo modo deslizante, em uma configuração aqui denominada de Controlador Fuzzy Modo Deslizante (FSMC – Do inglês: Fuzzy Sliding Mode Control). Um modelo dinâmico do MIT é desenvolvido em variáveis ‘d-q’ o que conduziu a um modelo eletromecânico em espaço de estados que exibe fortes não linearidades. A este modelo são aplicadas as condições de controle vetorial que permitem desacoplar o torque e o fluxo no MIT, de maneira que o seu comportamento dinâmico se assemelha àquele verificado em uma máquina de corrente contínua. Nesta condição, são implementados controladores do tipo proporcional e integral (PI) às malhas de controle de corrente e velocidade do motor, e são realizadas simulações computacionais para o rastreamento de velocidade e perturbação de carga, o que levam a resultados satisfatórios do ponto de vista dinâmico. Visando investigar o desempenho das estratégias não lineares nesta abordagem é apresentado o estudo da técnica de controle a estrutura chaveada do tipo modo deslizante. Um controlador modo deslizante convencional é implementado, onde se verifica que, a despeito do excelente desempenho dinâmico a ocorrência do fenômeno do “chettering” inviabiliza a aplicação desta estratégia em testes reais. Assim, é proposta a estratégia de controle FSMC, buscando associar o bom resultado dinâmico obtido com o controlador modo deslizante e a supressão do fenômeno do chettering, o que se atinge pela definição de uma camada de chaveamento do tipo Fuzzy. O controlador FSMC proposto é submetido aos mesmos testes computacionais que o controlador PI, conduzindo a resultados superiores a este último no transitório da resposta dinâmica, porém com a presença de erro em regime permanente. Para atacar este problema é implementada uma combinação Fuzzy das estratégias FSMC com a ação de controle PI, onde o primeiro busca atuar em regiões afastadas da superfície de chaveamento e o segundo busca introduzir o efeito da ação integral próximo à superfície. Os resultados obtidos mostram a viabilidade da estratégia em acionamento de velocidade variável que exigem elevado desempenho dinâmico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Los conjuntos borrosos de tipo 2 (T2FSs) fueron introducidos por L.A. Zadeh en 1975 [65], como una extensión de los conjuntos borrosos de tipo 1 (FSs). Mientras que en estos últimos el grado de pertenencia de un elemento al conjunto viene determinado por un valor en el intervalo [0, 1], en el caso de los T2FSs el grado de pertenencia de un elemento es un conjunto borroso en [0,1], es decir, un T2FS queda determinado por una función de pertenencia μ : X → M, donde M = [0, 1][0,1] = Map([0, 1], [0, 1]), es el conjunto de las funciones de [0,1] en [0,1] (ver [39], [42], [43], [61]). Desde que los T2FSs fueron introducidos, se han generalizado a dicho conjunto (ver [39], [42], [43], [61], por ejemplo), a partir del “Principio de Extensión” de Zadeh [65] (ver Teorema 1.1), muchas de las definiciones, operaciones, propiedades y resultados obtenidos en los FSs. Sin embargo, como sucede en cualquier área de investigación, quedan muchas lagunas y problemas abiertos que suponen un reto para cualquiera que quiera hacer un estudio profundo en este campo. A este reto se ha dedicado el presente trabajo, logrando avances importantes en este sentido de “rellenar huecos” existentes en la teoría de los conjuntos borrosos de tipo 2, especialmente en las propiedades de autocontradicción y N-autocontradicción, y en las operaciones de negación, t-norma y t-conorma sobre los T2FSs. Cabe destacar que en [61] se justifica que las operaciones sobre los T2FSs (Map(X,M)) se pueden definir de forma natural a partir de las operaciones sobre M, verificando las mismas propiedades. Por tanto, por ser más fácil, en el presente trabajo se toma como objeto de estudio a M, y algunos de sus subconjuntos, en vez de Map(X,M). En cuanto a la operación de negación, en el marco de los conjuntos borrosos de tipo 2 (T2FSs), usualmente se emplea para representar la negación en M, una operación asociada a la negación estándar en [0,1]. Sin embargo, dicha operación no verifica los axiomas que, intuitivamente, debe verificar cualquier operación para ser considerada negación en el conjunto M. En este trabajo se presentan los axiomas de negación y negación fuerte en los T2FSs. También se define una operación asociada a cualquier negación suprayectiva en [0,1], incluyendo la negación estándar, y se estudia, junto con otras propiedades, si es negación y negación fuerte en L (conjunto de las funciones de M normales y convexas). Además, se comprueba en qué condiciones se cumplen las leyes de De Morgan para un extenso conjunto de pares de operaciones binarias en M. Por otra parte, las propiedades de N-autocontradicción y autocontradicción, han sido suficientemente estudiadas en los conjuntos borrosos de tipo 1 (FSs) y en los conjuntos borrosos intuicionistas de Atanassov (AIFSs). En el presente trabajo se inicia el estudio de las mencionadas propiedades, dentro del marco de los T2FSs cuyos grados de pertenencia están en L. En este sentido, aquí se extienden los conceptos de N-autocontradicción y autocontradicción al conjunto L, y se determinan algunos criterios para verificar tales propiedades. En cuanto a otras operaciones, Walker et al. ([61], [63]) definieron dos familias de operaciones binarias sobre M, y determinaron que, bajo ciertas condiciones, estas operaciones son t-normas (normas triangulares) o t-conormas sobre L. En este trabajo se introducen operaciones binarias sobre M, unas más generales y otras diferentes a las dadas por Walker et al., y se estudian varias propiedades de las mismas, con el objeto de deducir nuevas t-normas y t-conormas sobre L. ABSTRACT Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975 [65] as an extension of type-1 fuzzy sets (FSs). Whereas for FSs the degree of membership of an element of a set is determined by a value in the interval [0, 1] , the degree of membership of an element for T2FSs is a fuzzy set in [0,1], that is, a T2FS is determined by a membership function μ : X → M, where M = [0, 1][0,1] is the set of functions from [0,1] to [0,1] (see [39], [42], [43], [61]). Later, many definitions, operations, properties and results known on FSs, have been generalized to T2FSs (e.g. see [39], [42], [43], [61]) by employing Zadeh’s Extension Principle [65] (see Theorem 1.1). However, as in any area of research, there are still many open problems which represent a challenge for anyone who wants to make a deep study in this field. Then, we have been dedicated to such challenge, making significant progress in this direction to “fill gaps” (close open problems) in the theory of T2FSs, especially on the properties of self-contradiction and N-self-contradiction, and on the operations of negations, t-norms (triangular norms) and t-conorms on T2FSs. Walker and Walker justify in [61] that the operations on Map(X,M) can be defined naturally from the operations onMand have the same properties. Therefore, we will work onM(study subject), and some subsets of M, as all the results are easily and directly extensible to Map(X,M). About the operation of negation, usually has been employed in the framework of T2FSs, a operation associated to standard negation on [0,1], but such operation does not satisfy the negation axioms on M. In this work, we introduce the axioms that a function inMshould satisfy to qualify as a type-2 negation and strong type-2 negation. Also, we define a operation on M associated to any suprajective negation on [0,1], and analyse, among others properties, if such operation is negation or strong negation on L (all normal and convex functions of M). Besides, we study the De Morgan’s laws, with respect to some binary operations on M. On the other hand, The properties of self-contradiction and N-self-contradiction have been extensively studied on FSs and on the Atanassov’s intuitionistic fuzzy sets (AIFSs). Thereon, in this research we begin the study of the mentioned properties on the framework of T2FSs. In this sense, we give the definitions about self-contradiction and N-self-contradiction on L, and establish the criteria to verify these properties on L. Respect to the t-norms and t-conorms, Walker et al. ([61], [63]) defined two families of binary operations on M and found that, under some conditions, these operations are t-norms or t-conorms on L. In this work we introduce more general binary operations on M than those given by Walker et al. and study which are the minimum conditions necessary for these operations satisfy each of the axioms of the t-norm and t-conorm.
Resumo:
The design of reverse logistics networks has now emerged as a major issue for manufacturers, not only in developed countries where legislation and societal pressures are strong, but also in developing countries where the adoption of reverse logistics practices may offer a competitive advantage. This paper presents a new model for partner selection for reverse logistic centres in green supply chains. The model offers three advantages. Firstly, it enables economic, environment, and social factors to be considered simultaneously. Secondly, by integrating fuzzy set theory and artificial immune optimization technology, it enables both quantitative and qualitative criteria to be considered simultaneously throughout the whole decision-making process. Thirdly, it extends the flat criteria structure for partner selection evaluation for reverse logistics centres to the more suitable hierarchy structure. The applicability of the model is demonstrated by means of an empirical application based on data from a Chinese electronic equipment and instruments manufacturing company.