976 resultados para Stress degradation studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of a series of para-substituted poly(styrene peroxide)s with electron-donating [CH3, C(CH3)(3)] and electron-attracting (Br) substitutents are investigated by thermogravimetric analysis (TGA). The results indicate that the Hammett relationship can describe quantitatively the trends in maximum rate of polymer decomposition (T-max) observed in TGA and thus thermostability of substituted poly(styrene peroxide)s depends only on the electronic nature of substituents and their ability to stabilize macroradicals formed during chain scission. The experimental results are also substantiated by thermochemical calculations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic acids are important constituents of fruit juices. They render tartness, flavour and specific taste to fruit juices. Shelf life and stability of fruit juices are important factors, which determine their nutritional quality and freshness. In this view, the effect of storage on the concentration of organic acids in commercially packed fruit juices is studied by reverse phase high performance liquid chromatography (RP-HPLC). Ten packed fruit juices from two different brands are stored at 30 C for 24, 48 and 72 hours. A reverse phase high performance liquid chromatographic method is used to determine the concentration of oxalic, tartaric, malic, ascorbic and citric acid in the fruit juices during storage. The chromatographic analysis of organic acids is carried out using mobile phase 0.5% (w/v) ammonium dihydrogen orthophosphate buffer (pH 2.8) on C18 column with UV-Vis detector. The results show that the concentration of organic acids generally decreases in juices under study with the increase in storage time. All the fruit juices belonging to tropicana brand underwent less organic acid degradation in comparison to juices of real brand. Orange fruit juice is found to be least stable among the juices under study, after the span of 72 hours. Amongst all the organic acids under investigation minimum stability is shown by ascorbic acid followed by malic and citric acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress corrosion studies of 50 Mn18Cr4 austenitic steel implanted with 120 keV N+, 100 keV Cr+, 200 keV and 400 keV Er+ ions were carried out by constant strain method in the nitrate solution. Surface composition and depth profiles of the implanted material were measured by AES sputter etching technique. The results exhibit that nitrogen implantation has no significant affection to the stress corrosion, but the chromium and erbium implantation has prolonged the incubation period of the stress corrosion cracking. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep fat frying process is one of the widely followed cooking practices throughout the world. Cooking oils serve as a medium for frying food for transferring heat and makes fried food tasty and palatable. Frying process is a most complex process involving numerous physicochemical changes which are complicated to understand. Frying leads to thermal degradation of oil through thermo-oxidation, hydrolysis, and polymerization. Hydrolysis results in formation of free fatty acids whereas oxidation process produces hydroperoxides and small molecular carbonyl compounds. This whole process leads to the formation of polar compounds and degradation of antioxidants that further degrades frying oil. Eventually, through mass transfer process these degradation products accumulate into fried food and reduce the nutritional quality of both oil and food. Thus, the frying process is of research interest calls for detailed systematic study which is chosen for the present study. The primary objective of this study is to understand the mechanism of degradation and characterization ofdegraded products which helps in arriving at the limits for frying oil utilization in terms of number of frying cycles. The mechanistic studies and the knowledge on the degraded products help to understand the way to retard the deterioration of oil for stability and enhancement of frying cycles. The study also explores the formation of the predominant polar compounds and their structural elucidation through mass spectrometry. Oxidation of oil is another important factor that ignites the degradation phenomena. One of the best ways to increase thermal stability of any oil is addition of potent antioxidants. But, most of the natural and synthetic antioxidants are unstable and ineffective at frying temperatures. Therefore, it is necessary to screen alternative antioxidants for their activity in the refined oils which are devoid of any added antioxidants. In this context, this study discussed the efficacy of several natural and synthetic antioxidants to retard the formation of polar compounds and thermooxidation during prolonged frying conditions. Similarly, the advantage of blending of two different oils to improve the thermal stability was explored. The present study brings out the total picture on the type of degradation products formed during frying and the ways of retarding the determination to improve upon the stability of the oil and enhancement of frying cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polyphosphate ester was synthesized by interfacial polycondensation of bisphenol-A and phenylphosphorodichloridate. Accelerated hydrolytic degradation studies were conducted under alkaline conditions. The effect of concentration of alkali and temperature were monitored. The rate of degradation reached a maximum value at 6 molar sodium hydroxide solution and then reduced. The activation energy for hydrolytic degradation was found to be 45 kcal/mol. Diffusion of alkali into the polymer pellet was studied at various concentrations of alkali and at various temperatures. The rate of diffusion also attained a maximum at 6M NaOH and the activation energy for diffusion process was found to be 12 kcal/mol. (C) 2002 John Wiley Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans cette étude, la stabilité de préparations intraveineuses de cyclosporine (0.2 et 2.5 mg/mL dans NaCl 0.9% ou dextrose 5%) entreposées dans des seringues de polypropylène, des sacs de polypropylène-polyoléfine et des sacs de vinyle acétate d’éthylène a été évaluée. Une méthode HPLC indicatrice de la stabilité à base de méthanol a été développée et validée suite a des études de dégradation forcée. Les solutions évaluées ont été préparées de façon aseptique, puis entreposées à 25°C. La stabilité chimique a été évaluée par HPLC et la stabilité physique a été évaluée par inspection visuelle et aussi par diffusion dynamique de la lumière (DLS). Tous les échantillons sont demeurés stables chimiquement et physiquement dans des sacs de polypropylène-polyoléfine (>98% de cyclosporine récupérée après 14 jours). Lorsqu’entreposés dans des seringues de polypropylène, des contaminants ont été extraits des composantes de la seringue. Toutefois, aucune contamination n’a été observée après 10 min de contact entre la préparation de cyclosporine non-diluée et ces mêmes seringues. Les préparations de 2.5 mg/mL entreposées dans des sacs de vinyle acétate d’éthylène sont demeurés stables chimiquement et physiquement (>98% de cyclosporine récupérée après 14 jours). Toutefois, une adsorption significative a été observée avec les échantillons 0.2 mg/mL entreposés dans des sacs de vinyle acétate d’éthylène (<90% de cyclosporine récupéré après 14 jours). Une étude cinétique a démontré une bonne corrélation linéaire entre la quantité adsorbée et la racine carrée du temps de contact (r2 > 0.97). Un nouveou modèle de diffusion a été établi. En conclusion, les sacs de polypropylène-polyoléfine sont le meilleur choix; les seringues de polypropylène présentent un risque de contamination, mais sont acceptables pour un transfert rapide. Les sacs de vinyle acétate d’éthylène ne peuvent être recommandés à cause d’un problème d’adsorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and aim Earthworms are an important test organisms used in several standard ecotoxicological tests (e.g. ISO, 2008, 2012; OECD, 2004, 1094) and they are also model organisms to test soil structure and permeability, as well as for important soil services as the degradation organic matter. Although histopathological changes have been demonstrated to be good biomarkers to assess the exposure of these animals to different physical and chemical stress agents, studies with clear and high quality images describing normal tissue conditions are scarce in the literature, so the aim of this work was to better characterize this biological model. Material and Methods Eight adult earthworms exposed to an artificial standard soil (OECD, 2004) for 28 days, were extracted and placed in a plastic box to depurate their gut content, fixed in 10% neutral-buffered formalin and processed for routine histopathological diagnosis. Results and discussion Satisfactory histological sections were obtained. Some difficulties were faced related with microtome sectioning, resulting in artefacts, namely lines across sections produced by a nick in the cutting edge of the microtome knife cutting tear, motivated by the presence of sand and other solid particles that persisted in the gut of earthworms. Nevertheless, it was possible to obtain representative figures from different earthworm sections. Conclusion Routine histological technique was effective for obtaining satisfactory histological sections and the knowledge of the histology of earthworms could be very useful for future application in environmental studies, using this biological model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of polycaprolactone (PCL) as a biomaterial, especially in the fields of drug delivery and tissue engineering, has enjoyed significant growth. Understanding how such a device or scaffold eventually degrades in vivo is paramount as the defect site regenerates and remodels. Degradation studies of three-dimensional PCL and PCL-based composite scaffolds were conducted in vitro (in phosphate buffered saline) and in vivo (rabbit model). Results up to 6 months are reported. All samples recorded virtually no molecular weight changes after 6 months, with a maximum mass loss of only about 7% from the PCL-composite scaffolds degraded in vivo, and a minimum of 1% from PCL scaffolds. Overall, crystallinity increased slightly because of the effects of polymer recrystallization. This was also a contributory factor for the observed stiffness increment in some of the samples, while only the PCL-composite scaffold registered a decrease. Histological examination of the in vivo samples revealed good biocompatibility, with no adverse host tissue reactions up to 6 months. Preliminary results of medical-grade PCL scaffolds, which were implanted for 2 years in a critical-sized rabbit calvarial defect site, are also reported here and support our scaffold design goal for gradual and late molecular weight decreases combined with excellent long-term biocompatibility and bone regeneration. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 906-919, 2009

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new class of biodegradable copolyesters was synthesized by the catalyst-free melt condensation of sorbitol with citric acid, tartaric acid, and sebacic acid. The resulting polymers were designated as poly(sorbitol citric sebacate) p(SCS)] and poly(sorbitol tartaric sebacate) p(STS)]. The synthesized polymers were characterized by Fourier transform infrared spectroscopy, H-1-NMR spectroscopy, and differential scanning calorimetry analysis. Porous spongelike scaffolds were prepared with a salt-leaching technique and characterized with scanning electron microscopy. Tensile testing of the p(SCS) and p(STS) polymers showed that they exhibited a wide range of mechanical properties. The Young's modulus and tensile strengths of the polymers ranged from 1.06 +/- 0.12 to 462.65 +/- 34.21 MPa and from 0.45 +/- 0.04 to 20.32 +/- 2.54 MPa, respectively. In vitro degradation studies were performed on disc-shaped polymer samples. The half-life of the polymers ranged from 0.54 to 38.52 days. The percentage hydration of the polymers was in the range 9.36 +/- 1.26 to 78.25 +/- 1.91, with sol contents of 2-14%. At any given polymer composition, the Young's modulus and tensile strength of p(SCS) was higher than that of p(STS), whereas the degradation rates of p(SCS) was lower than that of p(STS). This was attributed to the structural difference between the citric and tartaric monomers and to the degree of crosslinking. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 121: 2861-2869, 2011