930 resultados para Street Healing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a bridge between two studies by the author: (i) completed MA research; and (ii) on-going PhD research, on male sexual health and the street healing system in Bangladesh. Street healing, a traditional healing system in Bangladesh, is at the centre of the studies. This is a popular form of folk healing in Bangladesh, where male impotency is a central issue. The author has been researching street healing to understand male sexual health-seeking behaviour in Bangladesh. In this paper, the author brings in experiences from his MA research to explore the challenges of studying sexuality and street healing in Bangladesh and concludes by describing his plan to address those issues in his on-going PhD research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Street Computing workshop, held in conjunction with OZCHI 2009, solicits papers discussing new research directions, early research results, works-in-progress and critical surveys of prior research work in the areas of ubiquitous computing and interaction design for urban environments. Urban spaces have unique characteristics. Typically, they are densely populated, buzzing with life twenty-four hours a day, seven days a week. These traits afford many opportunities, but they also present many challenges: traffic jams, smog and pollution, stress placed on public services, and more. Computing technology, particularly the kind that can be placed in the hands of citizens, holds much promise in combating some of these challenges. Yet, computation is not merely a tool for overcoming challenges; rather, when embedded appropriately in our everyday lives, it becomes a tool of opportunity, for shaping how our cities evolve, for enabling us to interact with our city and its people in new ways, and for uncovering useful, but hidden relationships and correlations between elements of the city. The increasing availability of an urban computing infrastructure has lead to new and exciting ways inhabitants can interact with their city. This includes interaction with a wide range of services (e.g. public transport, public services), conceptual representations of the city (e.g. local weather and traffic conditions), the availability of a variety of shared and personal displays (e.g. public, ambient, mobile) and the use of different interaction modes (e.g. tangible, gesture-based, token-based). This workshop solicits papers that address the above themes in some way. We encourage researchers to submit work that deals with challenges and possibilities that the availability of urban computing infrastructure such as sensors and middleware for sensor networks pose. This includes new and innovative ways of interacting with and within urban environments; user experience design and participatory design approaches for urban environments; social aspects of urban computing; and other related areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful repair of wounds and tissues remains a major healthcare and biomedical challenge in the 21st Century. In particular, chronic wounds often lead to loss of functional ability, increased pain and decreased quality of life, and can be a burden on carers and health-system resources. Advanced healing therapies employing biological dressings, skin substitutes, growth factor-based therapies and synthetic a cellular matrices, all of which aim to correct irregular and dysfunctional cellular pathways present in chronic wounds, are becoming more popular. This review focuses on recent advances in biologically inspired devices for would healing and includes a commentary on the challenges facing the regulatory governance of such products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illegal street racing has received increased attention in recent years from the media, governments and road safety professionals. At the same time, there has been a shift from treating illegal street racing as a public nuisance issue to a road safety problem in Australia, as this behaviour now attracts a penalty of increased periods of vehicle impoundment leading to permanent vehicle forfeiture for repeat offences. This severe vehicle sanction is typically applied to repeat drink driving offenders and drivers who breach suspensions and disqualifications in North American jurisdictions, but was first introduced in Australia to deal with illegal street racing and associated risky driving behaviours, grouped together under the label of ‘hooning’ in Australian jurisdictions. This paper describes how Australian jurisdictions are dealing with this issue. The research described in this paper drew on multiple data sources to explore illegal street racing and the management of this issue in Australia. First, the paper reviews the relevant legislation in each Australian state to describe the cross-jurisdictional similarities and differences in approaches. It also describes some results from focus group discussions and a quantitative online survey with drivers who self-report engaging in illegal street racing and associated behaviours in Queensland, Australia. It was found that approaches to dealing with illegal street racing and associated risky driving behaviours in each Australian state are similar, with increasing periods of vehicle impoundment (leading to vehicle forfeiture) applied to repeat hooning offences within prescribed periods. Participants in the focus groups and respondents to the questionnaire generally felt these penalty periods were severe, with perceptions of severity increasing with the length of the penalty period. It was concluded that there is a need for each jurisdiction to objectively evaluate the effectiveness of their vehicle impoundment and forfeiture programs for hooning. These evaluations should compare the relative costs of these programs (e.g., enforcement, unrecovered towing and storage fees, and court costs) to the observed benefits (e.g., reduction in target behaviours, reduction in community complaints, and reduction in the number and severity of associated crashes).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.