417 resultados para Stratum corneum
Resumo:
Assortments of biophysical methods are used to the study the stratum corneum morphology and dynamic with the objective to elucidate the correlation between its structure and functions. Among these methods, there are: X-ray diffraction, electron paramagnetic resonance, differential scanning calorimetry, Raman spectroscopy with Fourrier transform, infrared spectroscopy and photoacustic spectroscopy. In this manuscript, methods are presented and discussed in relation to the use indication, interpretation of results and advantages and limitations to the stratum corneum analysis.
Resumo:
The flux of a compound across a membrane from any formulation, whether it contains penetration enhancers or not, is limited by its saturated solubility in the vehicle. Under such conditions the concentration of the permeant in the outer layers of the stratum corneum is also saturated. Consequently, when the permeation of a drug from a supersaturated solution leads to enhanced penetration, the concentration of the drug in the outer layers of the membrane is also supersaturated. Therefore, the stratum corneum may possess antinucleant properties which inhibit or retard the crystallisation process. In this study, the enhanced in vitro permeation of supersaturated solutions of piroxicam across human skin in diffusion cells was demonstrated. The amount of permeant in the stratum corneum was determined using a tape stripping technique. Supersaturated solutions up to four degrees of saturation were investigated which produced a linear relationship between the degree of saturation and the amount of piroxicam in the stratum corneum (R-2 = 0.970). Furthermore, the amount of piroxicam in the viable layers of the skin also increased with increasing degree of saturation. An analysis of the results suggested that enhanced penetration across human skin from supersaturated solutions of piroxicam may occur as a result of the antinucleating ability of the intercellular lipids of the stratum corneum. (C) 1997 Elsevier Science B.V.
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.
Resumo:
A pharmacokinetic hypothesis of stratum corneum with two parallel pathways, lipophilic and porous hydrophilic, is not well documented yet. Still questionable is the localization of the pores, and the present experiments were designed to elucidate the contribution of extracellular lipids and intracellular keratin to the structure of this pathway. Percutaneous penetration of baclofen, a model zwitterion, was studied in vitro using human cadaver skin. Aqueous or ethanolic saturated solutions of the drug (Cs = 4.6 and 0.4 mg/ mL, respectively) were applied on the skin that was pretreated with: methanol/chloroform (Me/Ch) or acetone-chloroform (Ac/Ch) (1:1) mixtures, or with these solvents followed by 0.2% solution of sodium lauryl sulfate (SLS). As controls, baclofen penetration through the intact full-thickness skin was determined, and the fluxes were 0.18 ±0.08 and 0.14 ±0.07 µg/cm2/h for aqueous and ethanolic solutions, respectively. When Me/Ch was used for 1 h, an expected increase of the penetration was observed, but the lag time, Tlag, was still nearly 20 h. When the less polar mixture, Ac/Ch, was used, no flux enhancement was observed, and with ethanol as the vehicle, decreased penetration was even noted. No effect on baclofen penetration was observed when SLS was used for 1 h after delipidization of the skin was done with either the Me/Ch or Ac/Ch mixture. The results suggest that the polar pathway may be located intercellularly and comprises aqueous regions surrounded by polar lipids, which create the walls of such microchannels.
Resumo:
The stratum corneum (SC) barrier typically consists of layers of corneocytes embedded in a lipid continuum that regulates barrier function. The lipid domain containing ceramides, cholesterol, and free fatty acids provides the major pathway for most drugs permeating across SC. Penetration enhancers diminish the SC barrier function. The classic enhancer is dimethyl sulfoxide (DMSO). Its mechanisms of action remain unclear, although DMSO disrupts lipid organisation and may displace protein-bound water. Here we use confocal Raman spectroscopy to probe molecular interactions between a finite (depleting) dose of DMSO and SC, as functions of depth and time, providing novel information about residence time and location of DMSO in human SC in vivo
Resumo:
Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50 degrees C. This effect becomes negligible at temperatures higher that ca. 60 degrees C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis. Published by Elsevier B.V.
Resumo:
Abstract Background Photodynamic therapy (PDT) using 5-aminolevulinic acid (5-ALA) is a skin cancer therapy that still has limitations due to the low penetration of this drug into the skin. We have proposed in this work a delivery system for 5-ALA based on liposomes having lipid composition similar to the mammalian stratum corneum (SCLLs) in order to optimize its skin delivery in Photodynamic Therapy (PDT) of skin cancers. Methods SCLLs were obtained by reverse phase evaporation technique and size distribution of the vesicles was determinated by photon correlation spectroscopy. In vitro permeation profile was characterized using hairless mouse skin mounted in modified Franz diffusion cell. Results Size exclusion chromatography on gel filtration confirmed vesicle formation. SCLLs obtained by presented a degree of encapsulation of 5-ALA around 5.7%. A distribution of vesicle size centering at around 500 nm and 400 nm respectively for SCLLs and SCLLs containing 5-ALA was found. In vitro 5-ALA permeation study showed that SCLLs preparations presented higher skin retention significantly (p < 0.05) on the epidermis without SC + dermis, with a decreasing of skin permeation compared to aqueous solution. Conclusions The in vitro delivery performance provided by SCLLs lead to consider this systems adequate for the 5-ALA-PDT of skin cancer, since SCLLs have delivered 5-ALA to the target skin layers (viable epidermis + dermis) to be treated by topical PDT of skin cancer.
Resumo:
The cornified layer, the stratum corneum, of the epidermis is an efficient barrier to the passage of genetic material, i.e. nucleic acids. It contains enzymes that degrade RNA and DNA which originate from either the living part of the epidermis or from infectious agents of the environment. However, the molecular identities of these nucleases are only incompletely known at present. Here we performed biochemical and genetic experiments to determine the main DNase activity of the stratum corneum. DNA degradation assays and zymographic analyses identified the acid endonucleases L-DNase II, which is derived from serpinB1, and DNase 2 as candidate DNases of the cornified layer of the epidermis. siRNA-mediated knockdown of serpinB1 in human in vitro skin models and the investigation of mice deficient in serpinB1a demonstrated that serpinB1-derived L-DNase II is dispensable for epidermal DNase activity. By contrast, knockdown of DNase 2, also known as DNase 2a, reduced DNase activity in human in vitro skin models. Moreover, the genetic ablation of DNase 2a in the mouse was associated with the lack of acid DNase activity in the stratum corneum in vivo. The degradation of endogenous DNA in the course of cornification of keratinocytes was not impaired by the absence of DNase 2. Taken together, these data identify DNase 2 as the predominant DNase on the mammalian skin surface and indicate that its activity is primarily targeted to exogenous DNA.
Resumo:
Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.
Resumo:
H-2Kb-restricted tumor epitope peptides, including tyrosinase-related protein 2 residues 181–188 (TRP-2) and connexin 37 residues 52–59 (MUT1), were applied to permeability barrier-disrupted C57BL/6 (B6) mouse skin from which the stratum corneum of the epidermis had been removed by tape-stripping. This procedure primed tumor-specific cytotoxic T lymphocytes (CTLs) in the lymph nodes and spleen, protected mice against subsequent challenge with corresponding tumor cells, and suppressed the growth of established tumors. Preventive and therapeutic effectiveness was correlated with the frequency of tumor-specific CTL precursors. MHC class II Iab+ cells separated from tape-stripped skin, compared with those from intact skin, exhibited a strong antigen-presenting capacity for CTL, suggesting that CTL expansion after peptide application is primarily mediated by epidermal Langerhans cells. Thus, percutaneous peptide immunization via barrier-disrupted skin provides a simple and noninvasive means of inducing potent anti-tumor immunity which may be exploited for cancer immunotherapy.
Resumo:
Sunless tanning formulas have become increasingly popular in recent years for their ability to give people convincing tans without the dangers of skin cancer. Most sunless tanners currently on the market contain dihydroxyacetone (DHA), a keto sugar with three carbons. The temporary pigment provided by these formulasis designed to resemble a UV-induced tan. This study evaluated the effectiveness of carbomer gels and cold process self emulsifying bases on skin pigmentation, using different concentrations of a chemical system composed of DHA and N-acetyl tyrosine, which are found in moulted snake skins and their effectiveness was tested by Mexameter (R) MX 18. Eight different sunless tanning formulas were developed, four of which were gels and four of which were emulsions (base, base plus 4.0%, 5.0% and 6.0% (w/w) of a system of DHA and N-acetyl tyrosine). Tests to determine the extent of artificial tanning were done by applying 30 mg cm(-2) of each formula onto standard sizes of moulted snake skin (2.0 cm x 3.0 cm). A Mexameter (R) MX 18 was used to evaluate the extent of coloration in the moulted snake skin at T(0) (before the application) and after 24, 48, 72, 168, 192 and 216 h. The moulted snake skins can be used as an alternative membrane model for in vitro sunless tanning efficacy tests due to their similarity to the human stratum corneum. The DHA concentration was found to influence the initiation of the pigmentation in both sunless tanning systems (emulsion and gel) as well as the time required to increases by a given amount on the tanning index. In the emulsion system, the DHA concentration also influenced the final value on the tanning index. The type of system (emulsion or gel) has no influence on the final value in the tanning index after 216 h for samples with the same DHA concentration.
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
Papain is a thiol proteolytic enzyme widely used in dermatology that found applications in wound treatment. Recently, papain was also used as absorption enhancer which can modify the peptide/ protein material in the bilayer domain. We investigated papain safety using human skin that was exposed to papain in vitro at different times: 4, 24 and 48 hours. The samples were examined using Light and Transmission Electron Microscopy (TEM) to study of the mechanisms involved in enhancer-skin interaction. After 24 hours, changes occurred in corneosomes. However, samples of 48 hours did not show major changes in agreement with the control. These findings indicated that papain could be used safely onto the skin.