999 resultados para Stratified flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using linear theory, it is shown that, in resonant flow over a 2D mountain ridge, such as exists when a layer of uniform wind is topped by an environmental critical level, the conditions for internal gravity-wave breaking are different from those determined in previous studies for non-resonant flows. For Richardson numbers in the shear layer not exceeding 2.25, two zones of flow overturning exist, respectively below and downstream and above and upstream of the expected locations. Flow overturning occurs for values of the dimensionless height of the ridge smaller than those required for a uniform wind profile. These results may have implications for the physical understanding of high-drag states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contribution from Soil Conservation Service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the main problems related to the transport and manipulation of multiphase fluids concerns the existence of characteristic flow patterns and its strong influence on important operation parameters. A good example of this occurs in gas-liquid chemical reactors in which maximum efficiencies can be achieved by maintaining a finely dispersed bubbly flow to maximize the total interfacial area. Thus, the ability to automatically detect flow patterns is of crucial importance, especially for the adequate operation of multiphase systems. This work describes the application of a neural model to process the signals delivered by a direct imaging probe to produce a diagnostic of the corresponding flow pattern. The neural model is constituted of six independent neural modules, each of which trained to detect one of the main horizontal flow patterns, and a last winner-take-all layer responsible for resolving when two or more patterns are simultaneously detected. Experimental signals representing different bubbly, intermittent, annular and stratified flow patterns were used to validate the neural model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Separation of stratified flow over a two-dimensional hill is inhibited or facilitated by acceleration or deceleration of the flow just outside the attached boundary layer. In this note, an expression is derived for this acceleration or deceleration in terms of streamline curvature and stratification. The expression is valid for linear as well as nonlinear deformation of the flow. For hills of vanishing aspect ratio a linear theory can be derived and a full regime diagram for separation can be constructed. For hills of finite aspect ratio scaling relationships can be derived that indicate the presence of a critical aspect ratio, proportional to the stratification, above which separation will occur as well as a second critical aspect ratio above which separation will always occur irrespective of stratification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deposits of two volcanic debris avalanches (VDA I and II) that occur in the upper Maronne valley, northwest sector of Cantal Volcano, France, were studied to establish their mechanisms of formation, transport and deposition. These two volcanic debris avalanches that clearly differ with regard to their structures, textures and extensions, exemplify the wide spectrum of events associated with large-scale sector collapse. VDA I is voluminous (similar to1 km(3) in the upper Maronne valley) and widespread. The deposits comprise two distinct facies: the block facies that forms the intermediate and upper part of the unit and the mixed facies that crops out essentially at the base of the unit. The block facies consists of more or less brecciated lava, block-and-ash-flow breccia and pumice-flow tuff megablocks set in breccias resulting from block disaggregation. Mixing and differential movements are almost absent in this part of the VDA. The mixed facies consists of breccias rich in fine particles that originate from block disagregation, as well as being picked up from the substratum during movement. Mixing and differential movements are predominant in this zone. Analysis of fractures on lava megablocks suggests that shear stress during the initial sliding is the principal cause of fracture. These data strongly indicate that VDA I is purely gravitational and argue for a model in which the initial sliding mass transforms into a flow due to differential in situ fragmentation caused by the shear stress. VDA II is restricted to low-topography areas. Its volume, in the studied area, is about 0.3 km(3). The deposits consist of brecciated, rounded blocks and megablocks set in a fine-grained matrix composed essentially of volcanic glass. This unit is stratified, with a massive layer that contains all the megablocks at the base and in the intermediate part, and in the upper part a normally graded layer that contains only blocks <1 m in size. The different lithologies present are totally mixed. These observations suggest that VDA II may be of the Bezymianny-type and that it underwent a flow transformation from a turbulent to a stratified flow consisting of a basal hyperconcentrated laminar body overlain by a dilute layer. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface drag force produced by trapped lee waves and upward propagating waves in non-hydrostatic stratified flow over a mountain ridge is explicitly calculated using linear theory for a two-layer atmosphere with piecewise-constant static stability and wind speed profiles. The behaviour of the drag normalized by its hydrostatic single-layer reference value is investigated as a function of the ratio of the Scorer parameters in the two layers l_2/l_1 and of the corresponding dimensionless interface height l_1 H, for selected values of the dimensionless ridge width l_1 a and ratio of wind speeds in the two layers. When l_2/l_1 → 1, the propagating wave drag approaches 1 in approximately hydrostatic conditions, and the trapped lee wave drag vanishes. As l_2/l_1 decreases, the propagating wave drag progressively displays an oscillatory behaviour with l_1 H, with maxima of increasing magnitude due to constructive interference of reflected waves in the lower layer. The trapped lee wave drag shows localized maxima associated with each resonant trapped lee wave mode, occurring for small l_2/l_1 and slightly higher values of l_1 H than the propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more non-hydrostatic, the propagating wave drag decreases and the regions of non-zero trapped lee wave drag extend to higher l_2/l_1. These results are confirmed by numerical simulations for l_2/l_1 = 0.2. In parameter ranges of meteorological relevance, the trapped lee wave drag may have a magnitude comparable to that of propagating wave drag, and be larger than the reference single-layer drag. This may have implications for drag parametrization in global climate and weather-prediction models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.