996 resultados para Strain-path reversal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of strain path change during rolling on the evolution of deformation texture has been studied for nanocrystalline (nc) nickel. An orthogonal change in strain path, as imparted by alternating rolling and transverse directions, leads to a texture with a strong Bs {110}aOE (c) 112 > component. The microstructural features, after large deformation, show distinct grain morphology for the cross-rolled material. Crystal plasticity simulations, based on viscoplastic self-consistent model, indicate that slip involving partial dislocation plays a vital role in accommodating plastic deformation during the initial stages of rolling. The brass-type texture evolved after cross rolling to large strains is attributed to change in strain path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold drawing is a process that sizes and smooths the surface of steel before it is cold headed to produce bolts. The effect of the changes in the mechanical properties due to cold drawing on the surface strain and ductility during the upsetting process was analysed showing that the stress and strain state can be more readily altered by changes in the process conditions (friction and height-to-diameter ratio) to cause greater increase in the failure strains than can be achieved by pre-drawing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of strain path reversal on the macroscopic orientation of microbands in AA5052 have been studied using high resolution electron backscatter diffraction. Deformation was carried using two equal steps of forward/forward or forward/reverse torsion at a temperature of 300°C and strain rate of 1s-1 to a total equivalent tensile strain of 0.5. In both cases microbands were found in the majority of grains examined with many having more than one set. The microbands appear to cluster at specific angles to the macroscopic deformation. For the forward/forward condition microbands clustered around -20° and +45° to the maximum principle stress direction and at ± 30-35° to the principal strain direction. For the forward/reverse condition significantly more spread in microband angle was observed though peaks were visible at ±35° with respect to principal stress direction and at -40° and +30° with respect to the principal strain direction of the reverse torsion. This suggests the microbands formed in the forward deformation have or are dissolving and any new microbands formed are related to the deformation conditions of the final strain path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to develop a kinematic hardening effect graph (KHEG) which can be used to evaluate the effect of kinematic hardening on the model accuracy of numerical sheet metal forming simulations and this without the need of complex material characterisation. The virtual manufacturing process design and optimisation depends on the accuracy of the constitutive models used to represent material behaviour. Under reverse strain paths the Bauschinger effect phenomenon is modelled using kinematic hardening models. However, due to the complexity of the experimental testing required to characterise this phenomenon in this work the KHEG is presented as an indicator to evaluate the potential benefit of carrying out these tests. The tool is validated with the classic three point bending process and the U-channel width drawbead process. In the same way, the capability of the KHEG to identify effects in forming processes that do not include forming strain reversals is identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of external weld flash on the formability of friction stir welding sheets through in-plane plane-strain formability tests. The load-extension behavior and forming limit strains are measured to quantify the formability. The influence of friction stir welding parameters on the height of weld flash was also studied. The base materials used for welding trials are AA6061T6 and AA5052H32 alloy sheets of 2.1-mm thickness. It is observed that the influence of external weld flash on the maximum load and total extension for all the friction stir welding conditions is negligible. The effect of weld flash on the limiting major strain is also insignificant. But the presence of weld flash has changed the limiting minor strain, more toward plane-strain condition, indicating the change in strain-path toward plane-strain. This is due to the strain taken by weld flash, along with the major strain, minor strain, and thickness strain in the friction stir welding sheet plane because of constancy of volume. The formation of weld flash and its height are affected synergistically by the axial force and temperature development during friction stir welding. The higher the axial force and temperature, the higher the flash height.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, advanced high strength steels (AHSS) have been used in a wide range of automotive applications; they may have property variations through the thickness and the properties may also be dependent of prior processing including pre-straining. In order to model forming processes precisely using, for example, finite element analysis, it is important that material input data should adequately reflect these effects. It is known that shape defects in roll forming are related to small strains in material that has undergone prior deformation in a different strain path. Much research has already been performed on the change in the Young’s Modulus once a steel sheet has been plastically deformed,however many of these tests have only been conducted using tensile testing, and therefore may not take into account differences in compressive and tensile unloading. This research investigates the effect of tensile pre-straining on bending behaviour for various types of material;in bending, one half of the sheet will load and unload in compression and hence experience deformation under a reversed stress. Four different materials were pre-strained in tension with 1%, 3%, 7%, 11% and 25% elongation. Using a free bending test, moment curvature diagrams were obtained for bending and unloading. The results showed that the characteristics of the moment curvature diagram depended on the degree of pre-straining; more highly strained samples showed an earlier elastic-plastic transformation and a decreased Young's Modulus during unloading. This was compared to previous literature results using only tensile tests. Our results could influence the modeling of springback in low tension sheet operations, such as roll forming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characterisation of strain path with respect to the directionality of defect formation is discussed. The criterion of non-monotonic strain path is used in the scalar and tensor models for damage accumulation and recovery. Comparable analysis of models and their verification has been obtained by simulation of crack initiation in a two-stage metal forming operation consisting of wire drawing followed by constrained upsetting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Forming Limit Diagram (FLD) is a conventional failure diagram to estimate necking limits of sheet metal for proportional loading conditions. Previous studies reveal that the FLD is not suitable for predicting the influence of nonlinear strain paths. This paper presents methodical comparison among all common available strain path independent strain/stress based limiting criteria. All the strain path independent strain based limiting criteria (Traditional Failure Diagram (TFD), Extended Forming Limit Diagram (XFLD), Extended Stress Ratio Based Forming Limit Diagram (ESRFLD), and Polar Effective Plastic StrainDiagram (PEPSD)) and stress based limiting criteria (Traditional Stress based Failure Diagram (TFSD), Stress Based Forming Limit Diagram (FLSD), Stress Ratio and Stress Based Forming Limit Diagram (SRFLSD), Extended Stress Based Forming Limit Diagram (XFLSD), and Polar Effective Stress Diagram (PESSD)) are approximately path-independent for smaller amount of pre-straining and path dependent for large pre-straining conditions. From advance image correlation technique precisely determination of local strains near necked area is possible today. However direct determination of local stresses near necked area is not possible. Therefore, local stresses and equivalent stress are determined by employing both yield criterion and strain-hardening law. Similarly equivalent strain is calculated by the use of yield criterion. Therefore, the choice of yield criterion has an impact on the results for TFD, XFLD, ESRFLD and PEPSD. However, selections of both yield criterion and strain-hardening law have substantial influence on the results for TFSD, FLSD, SRFLSD, XFLSD and PESSD. The inherent calculation error can be minimized by generation of experimental data for each material and then selection of representable yield criterion and strain-hardening law. Improvement of experimental techniques and generation of rigorous material data bank in various strain paths may help researchers to diagnose and resolve the issue. TFD, TFSD and XFLSD have inherent variables to take care the effect of through thickness stress, however rigorous experimental verification is needed before the field application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Severe plastic deformation techniques are known to produce grain sizes up to submicron level. This leads to conventional Hall-Petch strengthening of the as-processed materials. In addition, the microstructures of severe plastic deformation processed materials are characterized by relatively lower dislocation density compared to the conventionally processed materials subjected to the same amount of strain. These two aspects taken together lead to many important attributes. Some examples are ultra-high yield and fracture strengths, superplastic formability at lower temperatures and higher strain rates, superior wear resistance, improved high cycle fatigue life. Since these processes are associated with large amount of strain, depending on the strain path, characteristic crystallographic textures develop. In the present paper, a detailed account of underlying mechanisms during SPD has been discussed and processing-microstructure-texture-property relationship has been presented with reference to a few varieties of steels that have been investigated till date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.