919 resultados para Storm surges
Resumo:
The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.
Resumo:
The incidence of major storm surges in the last decade have dramatically emphasized the immense destructive capabilities of extreme water level events, particularly when driven by severe tropical cyclones. Given this risk, it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood and erosion management, engineering and for future land-use planning and to ensure the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. Australia has a long history of coastal flooding from tropical cyclones. Using a novel integration of two modeling techniques, this paper provides the first estimates of present day extreme water level exceedance probabilities around the whole coastline of Australia, and the first estimates that combine the influence of astronomical tides, storm surges generated by both extra-tropical and tropical cyclones, and seasonal and inter-annual variations in mean sea level. Initially, an analysis of tide gauge records has been used to assess the characteristics of tropical cyclone-induced surges around Australia. However, given the dearth (temporal and spatial) of information around much of the coastline, and therefore the inability of these gauge records to adequately describe the regional climatology, an observationally based stochastic tropical cyclone model has been developed to synthetically extend the tropical cyclone record to 10,000 years. Wind and pressure fields derived for these synthetically generated events have then been used to drive a hydrodynamic model of the Australian continental shelf region with annual maximum water levels extracted to estimate exceedance probabilities around the coastline. To validate this methodology, selected historic storm surge events have been simulated and resultant storm surges compared with gauge records. Tropical cyclone induced exceedance probabilities have been combined with estimates derived from a 61-year water level hindcast described in a companion paper to give a single estimate of present day extreme water level probabilities around the whole coastline of Australia. Results of this work are freely available to coastal engineers, managers and researchers via a web-based tool (www.sealevelrise.info). The described methodology could be applied to other regions of the world, like the US east coast, that are subject to both extra-tropical and tropical cyclones.
Resumo:
We analyzed long-term submersed macrophyte presence-absence data collected from 15 stations in Kings Bay/Crystal River, Florida in relation to three major storm events. The percent occurrence of most species declined immediately after storm events but the recovery pattern after the storm differed among species. Hydrilla (Hydrilla verticillata (L.F.) Royle)and Eurasian watermilfoil (Myriophyllum spicatum L.) exhibited differing recolonization behaviors. Eurasian watermilfoil recolonized quickly after storms but declined in abundance as hydrilla began to increase in abundance. Natural catastrophic events restructure submersed macrophyte communities by eliminating the dominate species, and allowing revegetation and restructuring of communities. Tidal surges may also act to maintain species diversity in the system. In addition, catastrophic events remove dense nuisance plant growth for several years, altering the public's perception of the nuisance plant problem of Kings Bay/Crystal River.
Resumo:
We analyzed long-term submersed macrophyte presence-absence data collected from 15 stations in Kings Bay/Crystal River, Florida in relation to three major storm events. The percent occurrence of most species declined immediately after storm events but the recovery pattern after the storm differed among species. Hydrilla (Hydrilla verticillata (L.F.) Royle)and Eurasian watermilfoil (Myriophyllum spicatum L.) exhibited differing recolonization behaviors. Eurasian watermilfoil recolonized quickly after storms but declined in abundance as hydrilla began to increase in abundance. Natural catastrophic events restructure submersed macrophyte communities by eliminating the dominate species, and allowing revegetation and restructuring of communities. Tidal surges may also act to maintain species diversity in the system. In addition, catastrophic events remove dense nuisance plant growth for several years, altering the public's perception of the nuisance plant problem of Kings Bay/Crystal River.
Resumo:
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyo, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.
Resumo:
It became so usual for the east coast of India to face at least IO to 15 cyclones every year, out of which 3 to 4 may reach the deep depression stage. As a result the east coast of India experiences frequent heavy damages of varying intensities due to storm surges and it is also not unusual to experience a calamitous deluge once in a decade or so. Loss of life and damages can be minimized only if the magnitude of the surge could be predicted at least a day in advance. Therefore, an attempt to study the storm surges generated by the cyclones that strike the east coast of India and. suggest a method of predicting them through nomogram is made
Resumo:
A seawall was constructed in 1897 along the steep coast of Streckelsberg, Usedom Island to stop the cliff retreat. It was destroyed several times by storm induced sea floods, reconstructed and gradually extended to a length of 450 m. After the severe storm event of 1/2.3.1949, no more repair work was implemented. The ruins were no longer capable of preventing further erosion of the Streckelsberg cliff. A new protective structure became a necessity against ongoing erosion, and to check the lowering of the abrasion platform. The construction of three breakwaters began in 1995. A severe storm occurred on 3/4.11.1995 before their completion. Coastal bottom sediment mapping using a sidescan-sonar carried out two days later showed that a channel system down to a depth of 1.5 m was cut into the sand layer covering the sea floor on both sides of the Koserow Bank. The bottom of these channels was paved with gravel and boulders. This layer was encountered in the whole surveyed area below a mobile sand layer. Discharged bodies of fine sand half a meter high and erosional cavities several m2 in diameter around boulders led to the conclusion that an intensive sediment movement down to a depth of 11 m had taken place during the storm. A storm related direction of sediment discharge could not be identified. The existing section of the breakwaters withstood the severe storm.
Resumo:
Vegetated coastal ecosystems provide goods and services to billions of people. In the aftermath of a series of recent natural disasters, including the Indian Ocean Tsunami, Hurricane Katrina and Cyclone Nargis, coastal vegetation has been widely promoted for the purpose of reducing the impact of large storm surges and tsunami. In this paper, we review the use of coastal vegetation as a "bioshield" against these extreme events. Our objective is to alter bioshield policy and reduce the long-term negative consequences for biodiversity and human capital. We begin with an overview of the scientific literature, in particular focusing on studies published since the Indian Ocean Tsunami in 2004 and discuss the science of wave attenuation by vegetation. We then explore case studies from the Indian subcontinent and evaluate the detrimental impacts bioshield plantations can have upon native ecosystems, drawing a distinction between coastal restoration and the introduction of exotic species in inappropriate locations. Finally, we place bioshield policies into a political context, and outline a new direction for coastal vegetation policy and research.
Resumo:
Vegetated coastal ecosystems provide goods and services to billions of people.In the aftermath of a series of recent natural disasters, including the Indian Ocean Tsunami, Hurricane Katrina and Cyclone Nargis, coastal vegetation has been widely promoted for the purpose of reducing the impact of large storm surges and tsunami. In this paper, we review the use of coastal vegetation as a ``bioshield'' against these extreme events. Our objective is to alter bioshield policy and reduce the long-term negative consequences for biodiversity and human capital. We begin with an overview of the scientific literature, in particular focusing on studies published since the Indian Ocean Tsunami in 2004 and discuss the science of wave attenuation by vegetation. We then explore case studies from the Indian subcontinent and evaluate the detrimental impacts bioshield plantations can have upon native ecosystems, drawing a distinction between coastal restoration and the introduction of exotic species in inappropriate locations. Finally, we place bioshield policies into a political context, and outline a new direction for coastal vegetation policy and research.
Resumo:
A coupled numerical model with a 2' x 2' resolution grid has been developed and used to simulate five typical typhoon storm surges (5612, 7413, 7910, 8114, and 9711) in the East Sea of China. Three main driving forces have been considered in this coupled model: wave radiation stress, combined wave-current bottom shear stress and wave-state-dependent surface wind stress. This model has then been compared with in situ measurements of the storm set-up. The effect of different driving force components on the total storm surge has also been investigated. This study has found that the coupled model with high resolution is capable of simulating the five typical typhoons better than the uncoupled models, and that the wave-dependent surface wind stress plays an important role in typhoon storm surge-wave coupling in this area and can increase the storm set-up by 1 m. The study of the five typhoon cases has shown that the general coupling effects could increase storm set-up by 20-32%. Thus, it is suggested that to predict typhoon storm surges in the East Sea of China, a storm surge-wave coupled model be adopted. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Increased tidal levels and storm surges related to climate change are projected to result in extremely adverse effects on coastal regions. Predictions of such extreme and small-scale events, however, are exceedingly challenging, even for relatively short time horizons. Here we use data from observations, ERA-40 reanalysis, climate scenario simulations, and a simple feature model to find that the frequency of extreme storm surge events affecting Venice is projected to decrease by about 30% by the end of the twenty-first century. In addition, through a trend assessment based on tidal observations we found a reduction in extreme tidal levels. Extrapolating the current +17 cm/century sea level trend, our results suggest that the frequency of extreme tides in Venice might largely remain unaltered under the projected twenty-first century climate simulations.
Resumo:
The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.