970 resultados para Stone masonry
Resumo:
Stone masonry is one of the oldest and most worldwide used building techniques. Nevertheless, the structural response of masonry structures is complex and the effective knowledge about their mechanical behaviour is still limited. This fact is particularly notorious when dealing with the description of their out-of-plane behaviour under horizontal loadings, as is the case of the earthquake action. In this context, this paper describes an experimental program, conducted in laboratory environment, aiming at characterizing the out-of-plane behaviour of traditional unreinforced stone masonry walls. In the scope of this campaign, six full-scale sacco stone masonry specimens were fully characterised regarding their most important mechanic, geometric and dynamic features and were tested resorting to two different loading techniques under three distinct vertical pre-compression states; three of the specimens were subjected to an out-of-plane surface load by means of a system of airbags and the remaining were subjected to an out-of-plane horizontal line-load at the top. From the experiments it was possible to observe that both test setups were able to globally mobilize the out-of-plane response of the walls, which presented substantial displacement capacity, with ratios of ultimate displacement to the wall thickness ranging between 26 and 45 %, as well as good energy dissipation capacity. Finally, very interesting results were also obtained from a simple analytical model used herein to compute a set of experimental-based ratios, namely between the maximum stability displacement and the wall thickness for which a mean value of about 60 % was found.
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
International Seminar on Seismic Risk and Rehabilitation of Stone Masonry Housing, Azores, Portugal, 1998
Resumo:
"1059, edition 3."
Resumo:
A nonlinear finite element model was developed to simulate the nonlinear response of three-leaf masonry specimens, which were subjected to laboratory tests with the aim of investigating the mechanical behaviour of multiple-leaf stone masonry walls up to failure. The specimens consisted of two external leaves made of stone bricks and mortar joints, and an internal leaf in mortar and stone aggregate. Different loading conditions, typologies of the collar joints, and stone types were taken into account. The constitutive law implemented in the model is characterized by a damage tensor, which allows the damage-induced anisotropy accompanying the cracking process to be described. To follow the post-peak behaviour of the specimens with sufficient accuracy it was necessary to make the damage model non-local, to avoid mesh-dependency effects related to the strain-softening behaviour of the material. Comparisons between the predicted and measured failure loads are quite satisfactory in most of the studied cases. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
During the last years, several studies have been made aiming to assess the out-of-plane seismic response of unreinforced stone masonry structures. This fact led to the development of a wide variety of models and approaches, ranging from simple kinematic based analytical models up to complex numerical simulations. Nevertheless, for the sake of simplicity, the out-of-plane seismic response of a masonry wall pier may be obtained by means of a simple single-degree-of-freedom system while still providing good results. In fact, despite the assumptions associated with such a simple formulation, it is also true that the epistemic uncertainty inherent with the selection of appropriate input parameters in more complex models may render them truly ineffective. In this framework, this paper focuses on the study of the out-of-plane bending of unreinforced stone masonry walls (cantilevers) by proposing a simplified analytical approach based on the construction of a linearized four-branch model, which is used to characterize the linear and nonlinear response of such structural elements through an overturning moment-rotation relationship. The formulation of the four-branch model is presented and described in detail and the meaningful parameters used for its construction are obtained from a set of experimental laboratory tests performed on six full-scale unreinforced regular sacco stone masonry specimens. Moreover, a parametric analysis aiming to evaluate the effect of these parameters’ variation on the final configuration of the model is presented and critically discussed. Finally, the results obtained from the application of the developed four-branch model on real unreinforced regular sacco stone masonry walls are thoroughly analysed and the main conclusions obtained from its application are summarized.
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).
Resumo:
The Azores archipelago is a zone with a vast cultural heritage, presenting a building stock mainly constructed in traditional stone masonry. It is known that this type of construction exhibits poor behaviour under seismic excitations; however it is extensively used in seismic prone areas, such as this case. The 9th of July of 1998 earthquake was the last seismic event in the islands, leaving many traditional stone constructions severely damaged or totally destroyed. This scenario led to an effort by the local government of improving the seismic resistance of these constructions, with the application of several reinforcement techniques. This work aims to study some of the most used reinforcement schemes after the 1998 earthquake, and to assess their effectiveness in the mitigation of the construction’s seismic vulnerability. A brief evaluation of the cost versus benefit of these retrofitting techniques is also made, seeking to identify those that are most suitable for each building typology. Thus, it was sought to analyze the case of real structures with different geometrical and physical characteristics, by establishing a comparison between the seismic performance of reinforced and non-reinforced structures. The first section contains the analysis of a total of six reinforcement scenarios for each building chosen. Using the recorded 1998 earthquake accelerograms, a linear time-history analysis was performed for each reinforcement scenario. A comparison was then established between the maximum displacements, inter-storey drift and maximum stress obtained, in order to evaluate the global seismic response of each reinforced structure. In the second part of the work, the examination of the performance obtained in the previous section, in relation to the cost of implementing each reinforcement technique, allowed to draw conclusions concerning the viability of implementing each reinforcement method, based on the book value of the buildings in study.
Resumo:
Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção
Resumo:
According to the importance of rehabilitation and recovery of Architectural Heritage in the live of people, this paper is aimed to strengthen the traditional methods of stone vaults calculation taking advantage of the technological characteristics of the powerful program ANSYS Workbench. As an example of this, it could find out the possible pathologies that could arise during the construction history of the building. To limit this research, the upper vault of the main chapel of the Santiago parish church in Orihuela -Alicante- is selected as a reference which is a Jeronimo Quijano´s important building work in the XVI century in the Renaissance. Moreover, it is an innovative stone masonry vault that consists of 8 double intercrossed arches with each other and braced by severies. During the seventeenth century there was a lantern in the central cap and it is unknown why it was removed. Its construction could justify the original constructive solution with intercrossed arches that freed the center to create a more enlightened and comfortable presbytery. By similarity with other Quijano’s works, it is considered a small lantern drilling the central spherical cap. It is proposed to carry out a comparative study of it with different architectural solutions from the same period and based on several common parameters such as: a vault of square plant with spherical surround, intercrossed arches, a possible lantern, the dimension of the permitted space, similar states of loads and compact limestone masonry. The three solutions are mainly differentiated by their size and the type of lantern and its comparison lets us know which one is the most resistant and stable. The other two building works maintain some connection with the Quijano's professional scope. It has selected the particular case of the Communion chapel of the Basilica in Elche (a large prismatic lantern with a large cylindrical drum that starts from the own arches and an upper hemispherical dome), for its conservation, its proximity to Orihuela and its implementation during the century XVIII. Finally, a significant Dome Spanish Renaissance complete the selection: a cross vault of the Benavides Chapel of the Saint Francisco Convent in Baeza - Jaén-, designed by Andres of Vandelvira in the sixteenth century (a large hemispherical dome that starts from the own arcs). To simplify the calculation and standardize the work that have to be contrasted, all of them were considered with some similar characteristics: 30 cm constant thickness, the intercrossed arches were specifically analyzed and had identical loads, Young's modulus and Poisson's ratio. Regarding the calculation solutions, in general terms, the compressive stresses predominate, influencing on it the joint collaboration of the filling material on the vault, the vault itself, the thick side walls, the buttresses and the top cover weight . In addition, the three solutions are suitable, being the Orihuela one the safest and the Baeza one the riskiest for its large dimensions. Thus, the idea of intercrossed arches with suitable thickness would allow carry out the heaviest lantern and this would confirm it as a Renaissance architectural typology built in stone.
Resumo:
The stone masonry walls are present in many buildings and historical monuments, with undeniable asset value, but also in old buildings housing both in Portugal and in Europe. Most of these buildings in masonry are in certain cases in a high state of degradation needing urgent intervention. This requires the identification of deficiencies and the application of appropriate intervention techniques. One of the possible techniques for structural consolidation works of stone masonry walls is the injection of fluid mortars currently called grouts. The choice of grouts is very important with regard in particular to their chemical and physical properties. In this study, carried out under the Master of Chemical Engineering, two types of lime-based grouts were used, in order to evaluate and compare their chemical resistance due to the crystallization of soluble salts. One of the grouts is a pre-dosed blend commercially available, Mape-Antique I from company Mapei (CA), and the second grout is a mixture prepared in the laboratory (LB), comprising metakaolin, cement, hydrated lime, water and superplasticizer. With the purpose of evaluating the action of sulphates on these grouts, a series of samples underwent several wetting-drying cycles using two different temperatures, 20 °C and 50 °C. During the experiment it was determined the change of weight and compressive strength in the analyzed grouts, as well as the sulphate ion concentration and pH of the solution in which the samples were dipped. The commercial grout (CA) apparently has a greater chemical resistance to sulphates. However grout LB showed to have positive results in some parameters.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
O conceito de atirantamento surgiu no contexto de promover a interação global dos edifícios, nomeadamente, estabelecer as referidas ligações, de modo a prevenir o derrubamento para o exterior das paredes de fachada, perante a ocorrência de ação sísmica ou assentamento das fundações. Neste sentido, o presente trabalho tem como objetivo, estudar o comportamento dos atirantamentos ancorados no plano perpendicular das fachadas, quando solicitados à tração. No entanto, como as alvenarias são elementos heterogéneos, houve necessidade de desarticular os atirantamentos e estudar cada uma das partes que o compõe: tirantes injetados em alvenarias e sistemas de ancoragem. Em primeiro lugar, foi elaborado um estudo preliminar sobre tirantes injetados em alvenarias, o qual incidiu no seu dimensionamento, na análise de sensibilidade, apresentação de um caso de estudo e comparação de resultados. Numa segunda fase fez-se uma revisão bibliográfica dos tipos de Sistemas de Ancoragens mais comuns, onde foram mencionados alguns aspetos, nomeadamente a importância, o objetivo e condições da sua aplicação. Por último, associaram-se as duas componentes e foram estudados os Atirantamentos. Fezse um estudo da sua utilização e do seu interesse de aplicação. Foi também analisada uma forma de metodologia de dimensionamento, quando inseridos em alvenarias de tijolo e pedra. Finalizado este estudo foram traçadas as conclusões e sugeridas perspetivas futuras.
Resumo:
A reabilitação de edifícios antigos tem vindo a alcançar uma maior importância na actual narrativa da organização das cidades, devido à inevitável necessidade de reabilitar o património arquitetónico dos centros degradados, sendo vista pelo setor da construção civil como uma atividade com potencial de desenvolvimento para todos os intervenientes na construção. Torna-se, por isso, num tema consensual e extremamente interessante como objeto de estudo e reflexão, concretamente na cidade do Porto, onde se pode encontrar um centro histórico classificado. Nesta perspetiva deve ser dada a devida relevância à preservação do património construído, reabilitando-o para que a população regresse ao centro urbano. O presente relatório tem como base um estágio desenvolvido na empresa Porto Vivo, Sociedade de Reabilitação Urbana (SRU) da Baixa do Porto. Numa primeira parte deste trabalho será feita uma reflexão sobre a reabilitação urbana, registando a evolução que esta tem vindo a sofrer ao longo dos tempos, tendo posteriormente o foco na cidade do Porto, mais concretamente no centro histórico da cidade. Também será dado ênfase à intervenção da Porto Vivo SRU. Numa segunda parte, serão abordados os tipos de estrutura predominantes no centro histórico da cidade do Porto, nomeadamente, estruturas de madeira e estruturas de alvenaria de pedra. Por fim, na terceira parte deste trabalho analisaremos dois casos de obra. Como corolário, apresentamos a conclusão do trabalho onde se incluem propostas e sugestões para o seu desenvolvimento futuro.
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008