768 resultados para Stomatal index
Resumo:
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus · euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements were taken of stomatal density (SD, number mm2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf stomatal conductance (gs, lmol m2 s1), photosynthetic CO2 fixation (A, mmol m2 s1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], gs was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers (SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata to elevated [CO2], although the mechanism for this remains obscure.
Resumo:
Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana ‘Landsberg erecta’ plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant’s resilience to fluctuating relative humidity.
Resumo:
Leaf and wood plasticity are key elements in the survival of widely distributed plant species. Little is known, however, about variation in stomatal distribution in the leaf epidermis and its correlation with the dimensions of conducting cells in wood. This study aimed at testing the hypothesis that Podocarpus lambertii, a conifer tree, possesses a well-defined pattern of stomatal distribution, and that this pattern can vary together with the dimensions of stem tracheids as a possible strategy to survive in climatically different sites. Leaves and wood were sampled from trees growing in a cold, wet site in south-eastern Brazil and in a warm, dry site in north-eastern Brazil. Stomata were thoroughly mapped in leaves from each study site to determine a spatial sampling strategy. Stomatal density, stomatal index and guard cell length were then sampled in three regions of the leaf: near the midrib, near the leaf margin and in between the two. This sampling strategy was used to test for a pattern and its possible variation between study sites. Wood and stomata data were analysed together via principal component analysis. The following distribution pattern was found in the south-eastern leaves: the stomatal index was up to 25 higher in the central leaf region, between the midrib and the leaf margin, than in the adjacent regions. The inverse pattern was found in the north-eastern leaves, in which the stomatal index was 10 higher near the midrib and the leaf margin. This change in pattern was accompanied by smaller tracheid lumen diameter and length. Podocarpus lambertii individuals in sites with higher temperature and lower water availability jointly regulate stomatal distribution in leaves and tracheid dimensions in wood. The observed stomatal distribution pattern and variation appear to be closely related to the placement of conducting tissue in the mesophyll.
Resumo:
本文以跨越漫长地质历史时期的银杏类植物为研究对象,首次尝试在大的时间尺度上利用单一植物类群的气孔频度估测古大气CO2浓度的变化趋势。 一、借助多种研究手段对现代银杏(Ginkgo biloba)和9种化石银杏的叶表皮特征进行调查,并对现代银杏叶片蜡质晶体的形态结构和气孔发育过程进行了研究。应用荧光显微镜观察晚三叠世一种拜拉植物的角质层特征,根据其气孔下生型和平直的表皮细胞垂周壁等特点建 立新种—宁蒗拜拉(Baiera ninglangensis sp. nov.)。 二、在大气CO2浓度相对稳定的条件下,对不同条件下(不同季节,长短枝间,不同冠层间,不同叶片面积,雌雄树间)银杏叶片气孔密度和气孔指数的调查结果表明,其它环境因子对银杏气孔频度的影响很有限,而且通过一定的采样、测量和分析策略,可以排除其他环境和生物因子对气孔特征的影响。 三、74年间,大气CO2浓度上升55μmol•mol-1的同时,银杏的气孔密度降低了27%。而3属8种中生代和新生代银杏类植物在9个时间点的气孔密度和气孔指数都低于现存最近对应种的值,意味着当时的大气CO2浓度都高于目前的水平。根据最新评估标准,以气孔比率定量估算各个地质时代的大气CO2浓度,与前人的工作以及通过地球物理化学方法获得的显生宙大气CO2浓度进行比较。
Resumo:
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Resumo:
Studies were conducted to identify and characterize different accessions of itchgrass. Seeds were collected in the counties of Aramina, Campinas, Dumont, Igarapava, Jaboticabal, and Ribeirao Preto, all in the state of São Paulo, Brazil. Accessions were characterized based on dimensions of their stomata, stomatal index (SI), and length and width of their seed (caryopses and husk). Chromosome number and length also were determined, and accessions were further differentiated using molecular markers (polymerase chain reaction [PCR]). Itchgrass from Ribeirao Preto had much longer and narrower seeds than those from the other locations, and their husks were longer as well. Accessions had similar SIs, both on the abaxial and adaxial leaf surfaces. Stomata from Campinas and Igarapava accessions were longer and wider, whereas those from Dumont and Ribeirao Preto were similar and smaller than all others. The accession from Ribeirao Preto is diploid (2n = 20); the rest are polyploid, with the total length of chromosomes smaller than all others. These differences were confirmed by molecular differentiation (PCR).
Resumo:
Casearia sylvestris Swartz (Salicaceae) é uma planta utilizada na medicina tradicional, cujos extratos de folhas demonstraram importantes ações farmacológicas. A espécie apresenta variação morfológica, genética e química. Duas variedades são consideradas devido a diferenças morfológicas: C. sylvestris var. sylvestris e var. lingua. Há dificuldades na definição destas variedades. O objetivo deste trabalho é avaliar diferenças morfo-anatômicas e químicas entre as variedades de C. sylvestris que permitam sua diferenciação com aplicação farmacêutica ou botânica. Seções transversais e paradérmicas de folhas foram preparadas para análises morfo-anatômicas, histoquímicas e microscopia quantitativa (indices de estômatos e paliçada). Análises cromatográficas (CLAE-DAD e CCD) foram realizadas para obter o perfil de diterpenos clerodânicos. Os resultados das análises morfo-anatômicas demonstraram diferenças significativas entre as variedades somente em cortes paradérmicos: var. sylvestris - paredes celulares epidérmicas poligonais e hipoestomática, var. lingua - paredes celulares epidérmicas arredondadas e anfiestomática. Os índices de estômatos não revelaram diferenças; os valores dos índices de paliçada foram de 2,8 para var. lingua e 3,9 para var. sylvestris. As análises cromatográficas confirmaram resultados prévios, demonstrando predomínio de diterpenos na var. sylvestris. Este trabalho sugere que análises cromatográficas e morfo-anatômicas podem ser ferramentas aplicáveis na distinção das variedades da espécie.
Resumo:
The sensitivities of benthic foraminiferal Mg/Ca and Li/Ca to bottom water temperature and carbonate saturation state have recently been assessed. Here we present a new approach that uses paired Mg/Ca and Li/Ca records to calculate simultaneous changes in temperature and saturation state. Using previously published records, we first use this approach to document a cooling of deep ocean waters associated with the establishment of the Antarctic ice sheet at the Eocene-Oligocene climate transition. We then apply this approach to new records of the Middle Miocene Climate Transition from ODP Site 761 to estimate variations in bottom water temperature and the oxygen isotopic composition of seawater. We estimate that the oxygen isotopic composition of seawater varied by ~1 per mil between the deglacial extreme of the Miocene Climatic Optimum and the glacial maximum following the Middle Miocene Climate Transition, indicating large amplitude variations in ice volume. However, the longer-term change between 15.3 and 12.5 Ma is marked by a ~1°C cooling of deep waters, and an increase in the oxygen isotopic composition of seawater of ~0.6 per mil. We find that bottom water saturation state increased in the lead up to the Middle Miocene Climate Transition and decreased shortly after. This supports decreasing pCO2 as a driver for global cooling and ice sheet expansion, in agreement with existing boron isotope and leaf stomatal index CO2 records but in contrast to the published alkenone CO2 records.