364 resultados para Stomata.
Resumo:
Transgenerational inheritance of abiotic stress-induced epigenetic modifications in plants has potential adaptive significance and might condition the offspring to improve the response to the same stress, but this is at least partly dependent on the potency, penetrance and persistence of the transmitted epigenetic marks. We examined transgenerational inheritance of low Relative Humidity-induced DNA methylation for two gene loci in the stomatal developmental pathway in Arabidopsis thaliana and the abundance of associated short-interfering RNAs (siRNAs). Heritability of low humidity-induced methylation was more predictable and penetrative at one locus (SPEECHLESS, entropy ≤ 0.02; χ2 < 0.001) than the other (FAMA, entropy ≤ 0.17; χ2 ns). Methylation at SPEECHLESS correlated positively with the continued presence of local siRNAs (r2 = 0.87; p = 0.013) which, however, could be disrupted globally in the progeny under repeated stress. Transgenerational methylation and a parental low humidity-induced stomatal phenotype were heritable, but this was reversed in the progeny under repeated treatment in a previously unsuspected manner.
Resumo:
Background and Aims the occurrence of stomata in seed coats is uncommon and there is limited information about their function(s). The aim of this study was to verify the distribution of stomata in seed coats of Swietenia macrophylla and to relate it to the imbibition process and aspects of the structure of the outer integument layers.Methods For the structural and ultrastructural studies, the seeds were processed using the usual techniques and studied under light and scanning electron microscopes. Histochemical tests were employed to identify the cell wall composition in the different seed coat portions. To assess the role of the stomata in the imbibition, non-impervious seeds were compared with partially impervious ones, in which only the embryo, median or hilar regions were left free. Further, the apoplastic pathway marker was employed to confirm the role of the stomata as sites of water passage during imbibition.Key Results A positive relationship was observed between seed coat thickness and stomata density. The stomata were devoid of movement, with a large pore. They occurred in large numbers in the embryo region and extended with lower frequency towards the wing. Imbibition rates were related to stomata density, suggesting that the stomata act as preferential sites for water entry in the S. macrophylla seeds.Conclusions At maturity, the stomata in the seed coat play a significant role in seed imbibition. The data may also infer that these permanently opened stomata have an important role in gas exchange during seed development, aiding embryo respiration.
Resumo:
To estimate whether or not a plant taxon found in the fossil record was locally present may be difficult if only pollen is analyzed. Plant macrofossils, in contrast, provide a clear indication of a taxon's local presence, although in some lake sediments or peats, macrofossils may be rare or degraded. For conifers, the stomata found on pollen slides are derived from needles and thus provide a valuable proxy for local presence and they can be identified to genus level. From previously published studies, a transect across the Alps based on 13 sites is presented. For basal samples in sandy silt above the till with high pollen values of Pinus, for example, we may distinguish pine pollen from distant sources (samples with no stomata), from reworked pollen (samples with stomata present). The first apparent local presence of most conifer genera based on stomata often but not always occurs together with the phase of rapid pollen increase (rational limit). An exception is Larix, with its annual deposition of needles and heavy poorly dispersed pollen, for it often shows the first stomata earlier, at the empirical pollen limit. The decline and potential local extinction of a conifer can sometimes be shown in the stomata record. The decline may have been caused by climatic change, competition, or human impact. In situations where conifers form the timberline, the stomata record may indicate timberline fluctuations. In the discussion of immigration or migration of taxa we advocate the use of the cautious term ``apparent local presence'' to include some uncertainties. Absence of a taxon is impossible to prove.
Resumo:
One approach to reducing the yield losses caused by banana viral diseases is the use of genetic engineering and pathogen-derived resistance strategies to generate resistant cultivars. The development of transgenic virus resistance requires an efficient banana transformation method, particularly for commercially important 'Cavendish' type cultivars such as 'Grand Nain'. Prior to this study, only two examples of the stable transformation of banana had been reported, both of which demonstrated the principle of transformation but did not characterise transgenic plants in terms of the efficiency at which individual transgenic lines were generated, relative activities of promoters in stably transformed plants, and the stability of transgene expression. The aim of this study was to develop more efficient transformation methods for banana, assess the activity of some commonly used and also novel promoters in stably transformed plants, and transform banana with genes that could potentially confer resistance to banana bunchy top nanovirus (BBTV) and banana bract mosaic potyvirus (BBrMV). A regeneration system using immature male flowers as the explant was established. The frequency of somatic embryogenesis in male flower explants was influenced by the season in which the inflorescences were harvested. Further, the media requirements of various banana cultivars in respect to the 2,4-D concentration in the initiation media also differed. Following the optimisation of these and other parameters, embryogenic cell suspensions of several banana (Musa spp.) cultivars including 'Grand Nain' (AAA), 'Williams' (AAA), 'SH-3362' (AA), 'Goldfinger' (AAAB) and 'Bluggoe' (ABB) were successfully generated. Highly efficient transformation methods were developed for both 'Bluggoe' and 'Grand Nain'; this is the first report of microprojectile bombardment transformation of the commercially important 'Grand Nain' cultivar. Following bombardment of embryogenic suspension cells, regeneration was monitored from single transfom1ed cells to whole plants using a reporter gene encoding the green fluorescent protein (gfp). Selection with kanamycin enabled the regeneration of a greater number of plants than with geneticin, while still preventing the regeneration of non-transformed plants. Southern hybridisation confirmed the neomycin phosphotransferase gene (npt II) was stably integrated into the banana genome and that multiple transgenic lines were derived from single bombardments. The activity, stability and tissue specificity of the cauliflower mosaic virus 358 (CaMV 35S) and maize polyubiquitin-1 (Ubi-1) promoters were examined. In stably transformed banana, the Ubi-1 promoter provided approximately six-fold higher p-glucuronidase (GUS) activity than the CaMV 35S promoter, and both promoters remained active in glasshouse grown plants for the six months they were observed. The intergenic regions ofBBTV DNA-I to -6 were isolated and fused to either the uidA (GUS) or gfjJ reporter genes to assess their promoter activities. BBTV promoter activity was detected in banana embryogenic cells using the gfp reporter gene. Promoters derived from BBTV DNA-4 and -5 generated the highest levels of transient activity, which were greater than that generated by the maize Ubi-1 promoter. In transgenic banana plants, the activity of the BBTV DNA-6 promoter (BT6.1) was restricted to the phloem of leaves and roots, stomata and root meristems. The activity of the BT6.1 promoter was enhanced by the inclusion of intron-containing fragments derived from the maize Ubi-1, rice Act-1, and sugarcane rbcS 5' untranslated regions in GUS reporter gene constructs. In transient assays in banana, the rice Act-1 and maize Ubi-1 introns provided the most significant enhancement, increasing expression levels 300-fold and 100-fold, respectively. The sugarcane rbcS intron increased expression about 10-fold. In stably transformed banana plants, the maize Ubi-1 intron enhanced BT6.1 promoter activity to levels similar to that of the CaMV 35S promoter, but did not appear to alter the tissue specificity of the promoter. Both 'Grand Nain' and 'Bluggoe' were transformed with constructs that could potentially confer resistance to BBTV and BBrMV, including constructs containing BBTV DNA-1 major and internal genes, BBTV DNA-5 gene, and the BBrMV coat protein-coding region all under the control of the Ubi-1 promoter, while the BT6 promoter was used to drive the npt II selectable marker gene. At least 30 transgenic lines containing each construct were identified and replicates of each line are currently being generated by micropropagation in preparation for virus challenge.
Resumo:
Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
Although species of Syzygium are abundant components of the rainforests in Queensland and New South Wales, little is known about the anatomy of the Australian taxa. Here we describe the foliar anatomy and micromorphology of Syzygium floribundum (syn: Waterhousea floribunda) using standard protocols for scanning electron microscopy (SEM) and light microscopy. Syzygium floribundum possesses dorsiventral leaves with cyclo-staurocytic stomata, single epidermis, internal phloem, rhombus-shaped calcium oxalate crystals and complex-open midrib. In general, leaf anatomical and micromorphological characters are common with some species of the tribe Syzygieae. However, this particular combination of leaf characters has not been reported in a species of the genus. The anatomy of the species is typical of mesophytic taxa.
Resumo:
The family Myrtaceae in Chile comprises 26 species in 10 genera. The species occur in a diverse rangeof environments including humid temperate forests, swamps, riparian habitats and coastal xeromorphicshrublands. Most of these species are either endemic to Chile or endemic to the humid temperate forestsof Chile and Argentina. Although many taxa have very restricted distributions and are of conservationconcern, little is known about their biology and vegetative anatomy. In this investigation, we describe andcompare the leaf anatomy and micromorphology of all Chilean Myrtaceae using standard protocols forlight and scanning electron microscopy. Leaf characters described here are related to epidermis, cuticle,papillae, stomata, hairs, mesophyll, crystals, secretory cavities and vascular system. Nearly all the specieshave a typical mesophytic leaf anatomy, but some species possess xerophytic characters such as doubleepidermis, hypodermis, pubescent leaves, thick adaxial epidermis and straight epidermal anticlinal walls,which correlate with the ecological distribution of the species. This is the first report on leaf anatomyand micromorphology in most of these species. We identified several leaf characters with potential tax-onomic and ecological significance. Some combinations of leaf characters can reliably delimitate genera,while others are unique to some species. An identification key using micromorphological and anatomicalcharacters is provided to distinguish genera and species.
Resumo:
Ginger autotetraploids were produced by immersing shoot tips in a 0.5% w/v colchicine, 2% v/v dimethyl sulfoxide solution for 2 h. Stomatal measurements were used as an early indicator of ploidy differences in culture with mean stomata length of tetraploids (49.2 μm) being significantly larger than the diploid (38.8 µm). Of the 500 shoot tips treated, 2% were characterised as stable autotetraploid lines following field evaluation over several seasons. Results were confirmed with flow cytometry and, of the 7 lines evaluated for distinctness and uniformity, 6 were solid tetraploid mutants and 1 was a periclinal chimera. Significant differences were noted between individual tetraploid lines in terms of shoot length, leaf length, leaf width, size of rhizome sections (knob weight) and fibre content. The solid autotetraploid lines had significantly wider, greener leaves than the diploids, they had significantly fewer but thicker shoots and, although ‘Queensland’ (the diploid parent from which the tetraploids were derived) had a greater total rhizome mass at harvest, its knob size was significantly smaller. From the autotetraploid lines, one line was selected for commercial release as ‘Buderim Gold’. It compared the most favourably with ‘Queensland’ in terms of the aroma/flavour profile and fibre content at early harvest, and had consistently good rhizome yield. More importantly it produced large rhizome sections, resulting in a higher recovery of premium grade confectionery ginger and a more attractive fresh market product.
Resumo:
The structures and manner with which Pseudocercospora macadamiae penetrates, colonises and proliferates from the pericarp of macadamia fruit was studied using scanning electron microscopy and fluorescence light microscopy. Germ tubes arising from conidia penetrated open stomata within 20 h of inoculation, without observation of specialised infection structures such as appressoria. Colonisation of the pericarp was intercellular, without observation of specialised intracellular infection structures such as haustoria, and was complete from the epidermis to the mesocarp. The fungus proliferated at the epidermis by the formation of conidiophores and conidia on substomatal and protuberant subepidermal stromata. These structures were not observed on the mesocarp surface. The onset of visual husk spot symptoms coincided with an increase in pathogen biomass on the pericarp surface. The progression of symptoms from tan-coloured spots to larger red-brown lesions coincided with the production of conidiophores from substomatal and protuberant subepidermal stromata. The darker the colour of the husk spot lesion, the more frequently protuberant subepidermal stromata were observed. These findings are discussed in the context of observation of other cercosporoid fungi.
Resumo:
Some whole leaf-clearing and staining techniques are described for the microscopic observation of the origin of powdery mildew conidiophores, whether from external mycelium or internal mycelium, emerging through stomata. These techniques enable separation of the two genera, Oidiopsis and Streptopodium, in the Erysiphaceae.
Resumo:
Quambalaria spp. are eucalypt leaf and shoot pathogens of growing global importance, yet virtually nothing is known regarding the manner in which they infect and colonize their hosts. A study of the infection process of Q. pitereka and Q.eucalypti on Corymbia and Eucalyptus species was thus undertaken using light, scanning and transmission electron microscopy after artificial inoculation. Conidial germination was triggered when relative humidity levels exceeded 90% and commenced within 2 h in the presence of free water. Light reduced germination but did not prevent germination from occurring. Conidial germination and hyphal growth occurred on the upper and lower leaf surfaces with penetration occurring via the stomata or wounds on the leaf surface or juvenile stems. There was no evidence of direct penetration of the host. Following penetration through the stomata, Q. pitereka and Q. eucalypti hyphae grew only intercellularly without the formation of haustoria or interaction apparatus, which is characteristic of the order Microstromatales. Instead, the presence of an interaction zone is demonstrated in this paper. Conidiophores arose through stomatal openings producing conidia 7 days after infection.
Resumo:
It is essential to have a thorough understanding of the sources and sinks of oxidized nitrogen (NOy) in the atmosphere, since it has a strong influence on the tropospheric chemistry and the eutrophication of ecosystems. One unknown component in the balance of gaseous oxidized nitrogen is vegetation. Plants absorb nitrogenous species from the air via the stomata, but it is not clear whether plants can also emit them at low ambient concentrations. The possible emissions are small and difficult to measure. The aim of this thesis was to analyse an observation made in southern Finland at the SMEAR II station: solar ultraviolet radiation (UV) induced NOy emissions in chambers measuring the gas exchange of Scots pine (Pinus sylvestris L.) shoots. Both measuring and modelling approaches were used in the study. The measurements were performed under noncontrolled field conditions at low ambient NOy concentrations. The chamber blank i.e. artefact NOy emissions from the chamber walls, was dependent on the UV irradiance and increased with time after renewing the Teflon film on chamber surfaces. The contribution of each pine shoot to the total NOy emissions in the chambers was determined by testing whether the emissions decrease when the shoots are removed from their chambers. Emissions did decrease, but only when the chamber interior was exposed to UV radiation. It was concluded that also the pine shoots emit NOy. The possible effects of transpiration on the chamber blank are discussed in the summary part of the thesis, based on previously unpublished data. The possible processes underlying the UV-induced NOy emissions were reviewed. Surface reactions were more likely than metabolic processes. Photolysis of nitrate deposited on the needles may have generated the NOy emissions; the measurements supported this hypothesis. In that case, the emissions apparently would consist mainly of nitrogen dioxide (NO2), nitric oxide (NO) and nitrous acid (HONO). Within studies on NOy exchange of plants, the gases most frequently studied are NO2 and NO (=NOx). In the present work, the implications of the emissions for the NOx exchange of pine were analysed with a model including both NOy emissions and NOy absorption. The model suggested that if the emissions exist, pines can act as an NOx source rather than a sink, even under relatively high ambient concentrations.
Resumo:
Madeira vine (Anredera cordifolia (Ten.) Steenis) is a climber in the angiosperm family Basellaceae. It is native to South America and has naturalised in Australia. It is regarded as a serious environmental weed because of the structural damage it causes to native vegetation. The present study, for the first time, documents anatomical and morphological traits of the leaves of A. cordifolia and considers their implications for its ecology and physiology. Plants were grown under three different light levels, and anatomical and morphological leaf characters were compared among light levels, among cohorts, and with documented traits of the related species, Basella alba L. Stomata were present on both the adaxial and abaxial sides of the leaf, with significantly more stomata on the abaxial side and under high light. This may account for the ability of this species to fix large amounts of carbon and rapidly respond to light gaps. The leaves had very narrow veins and no sclerenchyma, suggesting a low construction cost that is associated with invasive plants. There was no significant difference in any of the traits among different cohorts, which agrees with the claim that A. cordifolia primarily propagates vegetatively. The anatomy and morphology of A. cordifolia was similar to that of B. alba.