989 resultados para Stoichiometric compositions
Resumo:
We present the results of a density functional theory (DFT) investigation of the surfaces of rutile-like vanadium dioxide, VO2(R). We calculate the surface energies of low Miller index planes, and find that the most stable surface orientation is the (110). The equilibrium morphology of a VO2(R) particle has an acicular shape, laterally confined by (110) planes and topped by (011) planes. The redox properties of the (110) surface are investigated by calculating the relative surface free energies of the non-stoichiometric compositions as a function of oxygen chemical potential. It is found that the VO2(110) surface is oxidized with respect to the stoichiometric composition, not only at ambient conditions but also at the more reducing conditions under which bulk VO2 is stable in comparison with bulk V2O5. The adsorbed oxygen forms surface vanadyl species much more favorably than surface peroxo species.
Resumo:
Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350°C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100º up to 1200ºC in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)
Resumo:
It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)
Resumo:
Different compositions of Ni0,5-xCuxZn0,5Fe2O4 and Ni0,5-xCoxZn0,5Fe2O4 0 ≤ x ≤ 0.3 were synthesized ferrite y the citrate precursor method. The stoichiometric compositions were calcined in air at 350°C and then pressed into pellets and toroids. The pressed samples were sintered at temperatures of 1000, 1050 and 1100°C/3h in air control at the speed of heating and cooling. The calcined powders were characterized by XRD, TGA / DTG, FTIR, SEM and vibrating sample magnetometry (VSM) and the sintered samples by XRD, SEM, MAV, density and measurements of permeability and magnetic losses. There was pure phase formation ferrimagnetism applied at all temperatures except for A-I composition at all sintering temperatures and A-II only at a temperature of 1100°C. Crystallite sizes were obtained by Rietveld analysis, nanometer size from 11 to 20 nm for the calcined powders. For SEM, the sintered samples showed grain size between 1 and 10 micrometers. Bulk density (ρ) of sintered material presented to the Families almost linear behavior with increasing temperature and a tendency to decrease with increasing concentration of copper, different behavior of the B Family, where the increase in temperature decreased the density. The magnetic measurements revealed the powder characteristics of a soft ferrimagnetic material. Two processes of magnetization were considered, the superparamagnetism at low temperatures (350°C) and the formation of magnetic domains at higher temperatures. Obtaining the best parameters for P and B-II magnetic ferrites at high temperatures. The sintered material at 1000°C showed a relative permeability (μ) from 50 to 800 for the A Family and from 10 to 600 for the B Family. The samples sintered at 1100°C, B Family showed a variation from 10 to 1000 and the magnetic loss (tan δ) of A and B Families, around of 1. The frequency response of the toroidal core is in the range of 0.3 kHz. Several factors contribute to the behavior of microstructure considering the quantities μ and tan δ, such as the grain size, inter-and intragranular porosity, amount of grain boundary and the aspects of the dynamics of domain walls at high frequencies.
Resumo:
Modified fluorcanasite glasses were fabricated by either altering the molar ratios of Na 2O and CaO or by adding P 2O 5 to the parent stoichiometric glass compositions. Glasses were converted to glass-ceramics by a controlled two-stage heat treatment process. Rods (2 mm x 4 mm) were produced using the conventional lost-wax casting technique. Osteoconductive 45S5 bioglass was used as a reference material. Biocompatibility and osteoconductivity were investigated by implantation into healing defects (2 mm) in the midshaft of rabbit femora. Tissue response was investigated using conventional histology and scanning electron microscopy. Histological and histomorphometric evaluation of specimens after 12 weeks implantation showed significantly more bone contact with the surface of 45S5 bioglass implants when compared with other test materials. When the bone contact for each material was compared between experimental time points, the Glass-Ceramic 2 (CaO rich) group showed significant difference (p = 0.027) at 4 weeks, but no direct contact at 12 weeks. Histology and backscattered electron photomicrographs showed that modified fluorcanasite glass-ceramic implants had greater osteoconductivity than the parent stoichiometric composition. Of the new materials, fluorcanasite glass-ceramic implants modified by the addition of P 2O 5 showed the greatest stimulation of new mineralized bone tissue formation adjacent to the implants after 4 and 12 weeks implantation. © 2010 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The cobalt-manganese ferrites (Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4) has a mixed structure of spinel type and it has been regarded as one of candidates for petitive wide variety of applications in devices from ultrasonic generation and detection, sensors, transformers, as well as in medical industry. Ferrites cobalt-manganese nanostructured were produced via mechanical alloying with subsequent heat treatment and were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and magnetization. Samples of Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4 were obtained from the precursor powders Fe3O4, Co3O4 and Mn3O4 which were stoichiometrically mixed and ground by 10h and heat treated at 900°C for 2h. The diffraction confirmed the formation of the pure nanocrystalline phases to series Co1,2Fe1,8¡xMnxO4 with an average diameter of about 94nm. It was found that the lattice parameter increases with the substitution of Fe3Å by Mn3Å. The x-ray fluorescence revealed that the portions of metals in samples were close to the nominal stoichiometric compositions. The microstructural features observed in micrographs showed that the particles formed show very different morphology and particle size. The magnetic hysteresis measurements performed at low temperature showed that the saturation magnetization and remanence increased as the concentration of manganese, while the coercive field decreased. The anisotropy constant (Ke f ), was estimated from the data adjustments the law of approaching saturation. It was found that the anisotropy decreases substantially with the substitution of Fe by Mn.
Resumo:
Collectively, the xanthophyll class of carotenoids perform a variety of critical roles in light harvesting antenna assembly and function. The xanthophyll composition of higher plant photosystems (lutein, violaxanthin, and neoxanthin) is remarkably conserved, suggesting important functional roles for each. We have taken a molecular genetic approach in Arabidopsis toward defining the respective roles of individual xanthophylls in vivo by using a series of mutant lines that selectively eliminate and substitute a range of xanthophylls. The mutations, lut1 and lut2 (lut = lutein deficient), disrupt lutein biosynthesis. In lut2, lutein is replaced mainly by a stoichiometric increase in violaxanthin and antheraxanthin. A third mutant, aba1, accumulates normal levels of lutein and substitutes zeaxanthin for violaxanthin and neoxanthin. The lut2aba1 double mutant completely lacks lutein, violaxanthin, and neoxanthin and instead accumulates zeaxanthin. All mutants were viable in soil and had chlorophyll a/b ratios ranging from 2.9 to 3.5 and near wild-type rates of photosynthesis. However, mutants accumulating zeaxanthin exhibited a delayed greening virescent phenotype, which was most severe and often lethal when zeaxanthin was the only xanthophyll present. Chlorophyll fluorescence quenching kinetics indicated that both zeaxanthin and lutein contribute to nonphotochemical quenching; specifically, lutein contributes, directly or indirectly, to the rapid rise of nonphotochemical quenching. The results suggest that the normal complement of xanthophylls, while not essential, is required for optimal assembly and function of the light harvesting antenna in higher plants.
Resumo:
Few articles deal with lead and strontium isotopic analysis of water samples. The aim of this study was to define the chemical procedures for Pb and Sr isotopic analyses of groundwater samples from an urban sedimentary aquifer. Thirty lead and fourteen strontium isotopic analyses were performed to test different analytical procedures. Pb and Sr isotopic ratios as well as Sr concentration did not vary using different chemical procedures. However, the Pb concentrations were very dependent on the different procedures. Therefore, the choice of the best analytical procedure was based on the Pb results, which indicated a higher reproducibility from samples that had been filtered and acidified before the evaporation, had their residues totally dissolved, and were purified by ion chromatography using the Biorad® column. Our results showed no changes in Pb ratios with the storage time.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
In this work, a criterion considering the topological instability (lambda) and the differences in the electronegativity of the constituent elements (Delta e) was applied to the Al-La and Al-Ni-La systems in order to predict the best glass-forming compositions. The results were compared with literature data and with our own experimental data for the Al-La-Ni system. The alloy described in the literature as the best glass former in the Al-La system is located near the point with local maximum for the lambda.Delta e criterion. A good agreement was found between the predictions of the lambda.Delta e criterion and literature data in the Al-La-Ni system, with the region of the best glass-forming ability (GFA) and largest supercooled liquid region (Delta T(x)) coinciding with the best compositional region for amorphization indicated by the lambda.Delta e criterion. Four new glassy compositions were found in the Al-La-Ni system, with the best predicted composition presenting the best glass-forming ability observed so far for this system. Although the lambda.Delta e criterion needs further refinements for completely describe the glass-forming ability in the Al-La and Al-La-Ni systems, the results demonstrated that this criterion is a good tool to predict new glass-forming compositions. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Mineral chemistry, whole-rock compositions, and petrogenesis of leg 176 gabbros: Data and discussion
Resumo:
We report mineral chemistry, whole-rock major element compositions, and trace element analyses on Hole 735B samples drilled and selected during Leg 176. We discuss these data, together with Leg 176 shipboard data and Leg 118 sample data from the literature, in terms of primary igneous petrogenesis. Despite mineral compositional variation in a given sample, major constituent minerals in Hole 735B gabbroic rocks display good chemical equilibrium as shown by significant correlations among Mg# (= Mg/[Mg+Fe2+]) of olivine, clinopyroxene, and orthopyroxene and An (=Ca/[Ca+Na]) of plagioclase. This indicates that the mineral assemblages olivine + plagioclase in troctolite, plagioclase + clinopyroxene in gabbro, plagioclases + clinopyroxene + olivine in olivine gabbro, and plagioclase + clinopyroxene + olivine + orthopyroxene in gabbronorite, and so on, have all coprecipitated from their respective parental melts. Fe-Ti oxides (ilmenite and titanomagnetite), which are ubiquitous in most of these rocks, are not in chemical equilibrium with olivine, clinopyroxene, and plagioclase, but precipitated later at lower temperatures. Disseminated oxides in some samples may have precipitated from trapped Fe-Ti–rich melts. Oxides that concentrate along shear bands/zones may mark zones of melt coalescence/transport expelled from the cumulate sequence as a result of compaction or filter pressing. Bulk Hole 735B is of cumulate composition. The most primitive olivine, with Fo = 0.842, in Hole 735B suggests that the most primitive melt parental to Hole 735B lithologies must have Mg# ≤ 0.637, which is significantly less than Mg# = 0.714 of bulk Hole 735B.