975 resultados para Stochastic modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower partial moments plays an important role in the analysis of risks and in income/poverty studies. In the present paper, we further investigate its importance in stochastic modeling and prove some characterization theorems arising out of it. We also identify its relationships with other important applied models such as weighted and equilibrium models. Finally, some applications of lower partial moments in poverty studies are also examined

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato, abbiamo tentato di modellizzare i processi che regolano la presenza dei domini proteici. I domini proteici studiati in questa tesi sono stati ottenuti dai genomi batterici disponibili nei data base pubblici (principalmente dal National Centre for Biotechnology Information: NCBI) tramite una procedura di simulazione computazionale. Ci siamo concentrati su organismi batterici in quanto in essi la presenza di geni trasmessi orizzontalmente, ossia che parte del materiale genetico non provenga dai genitori, e assodato che sia presente in una maggiore percentuale rispetto agli organismi più evoluti. Il modello usato si basa sui processi stocastici di nascita e morte, con l'aggiunta di un parametro di migrazione, usato anche nella descrizione dell'abbondanza relativa delle specie in ambito delle biodiversità ecologiche. Le relazioni tra i parametri, calcolati come migliori stime di una distribuzione binomiale negativa rinormalizzata e adattata agli istogrammi sperimentali, ci induce ad ipotizzare che le famiglie batteriche caratterizzate da un basso valore numerico del parametro di immigrazione abbiano contrastato questo deficit con un elevato valore del tasso di nascita. Al contrario, ipotizziamo che le famiglie con un tasso di nascita relativamente basso si siano adattate, e in conseguenza, mostrano un elevato valore del parametro di migrazione. Inoltre riteniamo che il parametro di migrazione sia direttamente proporzionale alla quantità di trasferimento genico orizzontale effettuato dalla famiglia batterica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.